Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{4}x^{4}+1=119x^{4}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{4}.
x^{8}+1=119x^{4}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 4 kia riro ai te 8.
x^{8}+1-119x^{4}=0
Tangohia te 119x^{4} mai i ngā taha e rua.
t^{2}-119t+1=0
Whakakapia te t mō te x^{4}.
t=\frac{-\left(-119\right)±\sqrt{\left(-119\right)^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -119 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{119±33\sqrt{13}}{2}
Mahia ngā tātaitai.
t=\frac{33\sqrt{13}+119}{2} t=\frac{119-33\sqrt{13}}{2}
Whakaotia te whārite t=\frac{119±33\sqrt{13}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-\left(\frac{\sqrt{13}i}{2}+\frac{3}{2}i\right) x=-\frac{\sqrt{13}+3}{2} x=\frac{\sqrt{13}i}{2}+\frac{3}{2}i x=\frac{\sqrt{13}+3}{2} x=-\frac{\sqrt{13}i}{2}+\frac{3}{2}i x=\frac{3-\sqrt{13}}{2} x=-\left(-\frac{\sqrt{13}i}{2}+\frac{3}{2}i\right) x=-\frac{3-\sqrt{13}}{2}
Mai i te x=t^{4}, ka taea ngā otinga mā te whakaoti te whārite mō ia t.
x^{4}x^{4}+1=119x^{4}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{4}.
x^{8}+1=119x^{4}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 4 kia riro ai te 8.
x^{8}+1-119x^{4}=0
Tangohia te 119x^{4} mai i ngā taha e rua.
t^{2}-119t+1=0
Whakakapia te t mō te x^{4}.
t=\frac{-\left(-119\right)±\sqrt{\left(-119\right)^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -119 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{119±33\sqrt{13}}{2}
Mahia ngā tātaitai.
t=\frac{33\sqrt{13}+119}{2} t=\frac{119-33\sqrt{13}}{2}
Whakaotia te whārite t=\frac{119±33\sqrt{13}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{13}+3}{2} x=-\frac{\sqrt{13}+3}{2} x=-\frac{3-\sqrt{13}}{2} x=\frac{3-\sqrt{13}}{2}
I te mea ko x=t^{4}, ka riro ngā otinga mā te arotake i te x=±\sqrt[4]{t} mō t tōrunga.