Whakaoti mō x (complex solution)
x\in \frac{-\sqrt{13}-3}{2},-\frac{\sqrt{13}i}{2}-\frac{3}{2}i,\frac{\sqrt{13}i}{2}+\frac{3}{2}i,\frac{\sqrt{13}+3}{2},-\frac{\sqrt{13}i}{2}+\frac{3}{2}i,\frac{3-\sqrt{13}}{2},\frac{\sqrt{13}i}{2}-\frac{3}{2}i,\frac{\sqrt{13}-3}{2}
Whakaoti mō x
x=\frac{-\sqrt{13}-3}{2}\approx -3.302775638
x = \frac{\sqrt{13} + 3}{2} \approx 3.302775638
x=\frac{\sqrt{13}-3}{2}\approx 0.302775638
x=\frac{3-\sqrt{13}}{2}\approx -0.302775638
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{4}x^{4}+1=119x^{4}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{4}.
x^{8}+1=119x^{4}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 4 kia riro ai te 8.
x^{8}+1-119x^{4}=0
Tangohia te 119x^{4} mai i ngā taha e rua.
t^{2}-119t+1=0
Whakakapia te t mō te x^{4}.
t=\frac{-\left(-119\right)±\sqrt{\left(-119\right)^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -119 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{119±33\sqrt{13}}{2}
Mahia ngā tātaitai.
t=\frac{33\sqrt{13}+119}{2} t=\frac{119-33\sqrt{13}}{2}
Whakaotia te whārite t=\frac{119±33\sqrt{13}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-\left(\frac{\sqrt{13}i}{2}+\frac{3}{2}i\right) x=-\frac{\sqrt{13}+3}{2} x=\frac{\sqrt{13}i}{2}+\frac{3}{2}i x=\frac{\sqrt{13}+3}{2} x=-\frac{\sqrt{13}i}{2}+\frac{3}{2}i x=\frac{3-\sqrt{13}}{2} x=-\left(-\frac{\sqrt{13}i}{2}+\frac{3}{2}i\right) x=-\frac{3-\sqrt{13}}{2}
Mai i te x=t^{4}, ka taea ngā otinga mā te whakaoti te whārite mō ia t.
x^{4}x^{4}+1=119x^{4}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{4}.
x^{8}+1=119x^{4}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 4 kia riro ai te 8.
x^{8}+1-119x^{4}=0
Tangohia te 119x^{4} mai i ngā taha e rua.
t^{2}-119t+1=0
Whakakapia te t mō te x^{4}.
t=\frac{-\left(-119\right)±\sqrt{\left(-119\right)^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -119 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{119±33\sqrt{13}}{2}
Mahia ngā tātaitai.
t=\frac{33\sqrt{13}+119}{2} t=\frac{119-33\sqrt{13}}{2}
Whakaotia te whārite t=\frac{119±33\sqrt{13}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{13}+3}{2} x=-\frac{\sqrt{13}+3}{2} x=-\frac{3-\sqrt{13}}{2} x=\frac{3-\sqrt{13}}{2}
I te mea ko x=t^{4}, ka riro ngā otinga mā te arotake i te x=±\sqrt[4]{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}