Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±12,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 12, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=6
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-2=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-6x^{2}-2x+12 ki te x-6, kia riro ko x^{2}-2. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-2\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 0 mō te b, me te -2 mō te c i te ture pūrua.
x=\frac{0±2\sqrt{2}}{2}
Mahia ngā tātaitai.
x=-\sqrt{2} x=\sqrt{2}
Whakaotia te whārite x^{2}-2=0 ina he tōrunga te ±, ina he tōraro te ±.
x=6 x=-\sqrt{2} x=\sqrt{2}
Rārangitia ngā otinga katoa i kitea.