Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±13,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 13, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-6x+13=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-5x^{2}+7x+13 ki te x+1, kia riro ko x^{2}-6x+13. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 13}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -6 mō te b, me te 13 mō te c i te ture pūrua.
x=\frac{6±\sqrt{-16}}{2}
Mahia ngā tātaitai.
x=3-2i x=3+2i
Whakaotia te whārite x^{2}-6x+13=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=3-2i x=3+2i
Rārangitia ngā otinga katoa i kitea.
±13,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 13, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-6x+13=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-5x^{2}+7x+13 ki te x+1, kia riro ko x^{2}-6x+13. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 13}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -6 mō te b, me te 13 mō te c i te ture pūrua.
x=\frac{6±\sqrt{-16}}{2}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=-1
Rārangitia ngā otinga katoa i kitea.