Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{3}+x^{2}+x+1x^{2}+x+1
Pahekotia te x^{3} me 1x^{3}, ka 2x^{3}.
2x^{3}+2x^{2}+x+x+1
Pahekotia te x^{2} me 1x^{2}, ka 2x^{2}.
2x^{3}+2x^{2}+2x+1
Pahekotia te x me x, ka 2x.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}+x^{2}+x+1x^{2}+x+1)
Pahekotia te x^{3} me 1x^{3}, ka 2x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}+2x^{2}+x+x+1)
Pahekotia te x^{2} me 1x^{2}, ka 2x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}+2x^{2}+2x+1)
Pahekotia te x me x, ka 2x.
3\times 2x^{3-1}+2\times 2x^{2-1}+2x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
6x^{3-1}+2\times 2x^{2-1}+2x^{1-1}
Whakareatia 3 ki te 2.
6x^{2}+2\times 2x^{2-1}+2x^{1-1}
Tango 1 mai i 3.
6x^{2}+4x^{2-1}+2x^{1-1}
Whakareatia 2 ki te 2.
6x^{2}+4x^{1}+2x^{1-1}
Tango 1 mai i 2.
6x^{2}+4x^{1}+2x^{0}
Tango 1 mai i 1.
6x^{2}+4x+2x^{0}
Mō tētahi kupu t, t^{1}=t.
6x^{2}+4x+2\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
6x^{2}+4x+2
Mō tētahi kupu t, t\times 1=t me 1t=t.