Whakaoti mō x (complex solution)
x\in \frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}
Whakaoti mō x
x=\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}\approx 0.72556263
x = \frac{2 ^ {\frac{2}{3}} \sqrt[3]{\sqrt{5} + 3}}{2} \approx 1.378240772
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{3}x^{3}+1=3x^{3}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{3}.
x^{6}+1=3x^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 3 kia riro ai te 6.
x^{6}+1-3x^{3}=0
Tangohia te 3x^{3} mai i ngā taha e rua.
t^{2}-3t+1=0
Whakakapia te t mō te x^{3}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -3 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{3±\sqrt{5}}{2}
Mahia ngā tātaitai.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
Whakaotia te whārite t=\frac{3±\sqrt{5}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
Mai i te x=t^{3}, ka taea ngā otinga mā te whakaoti te whārite mō ia t.
x=\sqrt[3]{\frac{3-\sqrt{5}}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0 x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0
Tē taea kia ōrite te tāupe x ki 0.
x^{3}x^{3}+1=3x^{3}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{3}.
x^{6}+1=3x^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 3 kia riro ai te 6.
x^{6}+1-3x^{3}=0
Tangohia te 3x^{3} mai i ngā taha e rua.
t^{2}-3t+1=0
Whakakapia te t mō te x^{3}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -3 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{3±\sqrt{5}}{2}
Mahia ngā tātaitai.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
Whakaotia te whārite t=\frac{3±\sqrt{5}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
I te mea ko x=t^{3}, ka riro ngā otinga mā te arotake i te x=\sqrt[3]{t} mō ia t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}