Aromātai
x
Kimi Pārōnaki e ai ki x
1
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
{ x }^{ 3 } \times { \left(- \frac{ 1 }{ x } \right) }^{ 2 }
Tohaina
Kua tāruatia ki te papatopenga
\left(x^{1}\right)^{3}\left(-\frac{1}{x}\right)^{2}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
1^{3}\left(x^{1}\right)^{3}\times \left(\frac{1}{x}\right)^{2}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
1^{3}x^{3}x^{-2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
1^{3}x^{3-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
1^{3}x^{1}
Tāpirihia ngā taupū 3 me -2.
x^{1}
Hīkina te -1 ki te pū 2.
x
Mō tētahi kupu t, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \left(\frac{1}{x}\right)^{2})
Tātaihia te -\frac{1}{x} mā te pū o 2, kia riro ko \left(\frac{1}{x}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{1^{2}}{x^{2}})
Kia whakarewa i te \frac{1}{x} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\times 1^{2}}{x^{2}})
Tuhia te x^{3}\times \frac{1^{2}}{x^{2}} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(1^{2}x)
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(1x)
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}