Whakaoti mō b (complex solution)
\left\{\begin{matrix}\\b=x-a\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=-a\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}\\b=x-a\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=-a\end{matrix}\right.
Whakaoti mō a
a=-x
a=x-b
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-ab-a^{2}-bx=0
Tangohia te bx mai i ngā taha e rua.
-ab-a^{2}-bx=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-ab-bx=-x^{2}+a^{2}
Me tāpiri te a^{2} ki ngā taha e rua.
\left(-a-x\right)b=-x^{2}+a^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(-x-a\right)b=a^{2}-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-x-a\right)b}{-x-a}=\frac{\left(a-x\right)\left(x+a\right)}{-x-a}
Whakawehea ngā taha e rua ki te -a-x.
b=\frac{\left(a-x\right)\left(x+a\right)}{-x-a}
Mā te whakawehe ki te -a-x ka wetekia te whakareanga ki te -a-x.
b=x-a
Whakawehe \left(x+a\right)\left(-x+a\right) ki te -a-x.
x^{2}-ab-a^{2}-bx=0
Tangohia te bx mai i ngā taha e rua.
-ab-a^{2}-bx=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-ab-bx=-x^{2}+a^{2}
Me tāpiri te a^{2} ki ngā taha e rua.
\left(-a-x\right)b=-x^{2}+a^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(-x-a\right)b=a^{2}-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-x-a\right)b}{-x-a}=\frac{\left(a-x\right)\left(x+a\right)}{-x-a}
Whakawehea ngā taha e rua ki te -a-x.
b=\frac{\left(a-x\right)\left(x+a\right)}{-x-a}
Mā te whakawehe ki te -a-x ka wetekia te whakareanga ki te -a-x.
b=x-a
Whakawehe \left(x+a\right)\left(-x+a\right) ki te -a-x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}