Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-8x+10-3x=0
Tangohia te 3x mai i ngā taha e rua.
x^{2}-11x+10=0
Pahekotia te -8x me -3x, ka -11x.
a+b=-11 ab=10
Hei whakaoti i te whārite, whakatauwehea te x^{2}-11x+10 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-10 -2,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
-1-10=-11 -2-5=-7
Tātaihia te tapeke mō ia takirua.
a=-10 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x-10\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=10 x=1
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x-1=0.
x^{2}-8x+10-3x=0
Tangohia te 3x mai i ngā taha e rua.
x^{2}-11x+10=0
Pahekotia te -8x me -3x, ka -11x.
a+b=-11 ab=1\times 10=10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-10 -2,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
-1-10=-11 -2-5=-7
Tātaihia te tapeke mō ia takirua.
a=-10 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x^{2}-10x\right)+\left(-x+10\right)
Tuhia anō te x^{2}-11x+10 hei \left(x^{2}-10x\right)+\left(-x+10\right).
x\left(x-10\right)-\left(x-10\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-10\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi x-10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=10 x=1
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x-1=0.
x^{2}-8x+10-3x=0
Tangohia te 3x mai i ngā taha e rua.
x^{2}-11x+10=0
Pahekotia te -8x me -3x, ka -11x.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -11 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 10}}{2}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121-40}}{2}
Whakareatia -4 ki te 10.
x=\frac{-\left(-11\right)±\sqrt{81}}{2}
Tāpiri 121 ki te -40.
x=\frac{-\left(-11\right)±9}{2}
Tuhia te pūtakerua o te 81.
x=\frac{11±9}{2}
Ko te tauaro o -11 ko 11.
x=\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{11±9}{2} ina he tāpiri te ±. Tāpiri 11 ki te 9.
x=10
Whakawehe 20 ki te 2.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{11±9}{2} ina he tango te ±. Tango 9 mai i 11.
x=1
Whakawehe 2 ki te 2.
x=10 x=1
Kua oti te whārite te whakatau.
x^{2}-8x+10-3x=0
Tangohia te 3x mai i ngā taha e rua.
x^{2}-11x+10=0
Pahekotia te -8x me -3x, ka -11x.
x^{2}-11x=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-10+\left(-\frac{11}{2}\right)^{2}
Whakawehea te -11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{2}. Nā, tāpiria te pūrua o te -\frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-11x+\frac{121}{4}=-10+\frac{121}{4}
Pūruatia -\frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-11x+\frac{121}{4}=\frac{81}{4}
Tāpiri -10 ki te \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{81}{4}
Tauwehea x^{2}-11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{2}=\frac{9}{2} x-\frac{11}{2}=-\frac{9}{2}
Whakarūnātia.
x=10 x=1
Me tāpiri \frac{11}{2} ki ngā taha e rua o te whārite.