Whakaoti mō x (complex solution)
x=3+\sqrt{2}i\approx 3+1.414213562i
x=-\sqrt{2}i+3\approx 3-1.414213562i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-6x+11=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 11}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me 11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 11}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-44}}{2}
Whakareatia -4 ki te 11.
x=\frac{-\left(-6\right)±\sqrt{-8}}{2}
Tāpiri 36 ki te -44.
x=\frac{-\left(-6\right)±2\sqrt{2}i}{2}
Tuhia te pūtakerua o te -8.
x=\frac{6±2\sqrt{2}i}{2}
Ko te tauaro o -6 ko 6.
x=\frac{6+2\sqrt{2}i}{2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{2}i}{2} ina he tāpiri te ±. Tāpiri 6 ki te 2i\sqrt{2}.
x=3+\sqrt{2}i
Whakawehe 6+2i\sqrt{2} ki te 2.
x=\frac{-2\sqrt{2}i+6}{2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{2}i}{2} ina he tango te ±. Tango 2i\sqrt{2} mai i 6.
x=-\sqrt{2}i+3
Whakawehe 6-2i\sqrt{2} ki te 2.
x=3+\sqrt{2}i x=-\sqrt{2}i+3
Kua oti te whārite te whakatau.
x^{2}-6x+11=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-6x+11-11=-11
Me tango 11 mai i ngā taha e rua o te whārite.
x^{2}-6x=-11
Mā te tango i te 11 i a ia ake anō ka toe ko te 0.
x^{2}-6x+\left(-3\right)^{2}=-11+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-11+9
Pūrua -3.
x^{2}-6x+9=-2
Tāpiri -11 ki te 9.
\left(x-3\right)^{2}=-2
Tauwehea te x^{2}-6x+9. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=\sqrt{2}i x-3=-\sqrt{2}i
Whakarūnātia.
x=3+\sqrt{2}i x=-\sqrt{2}i+3
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}