Whakaoti mō x
x=6
x=58
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-64 ab=348
Hei whakaoti i te whārite, whakatauwehea te x^{2}-64x+348 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-348 -2,-174 -3,-116 -4,-87 -6,-58 -12,-29
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 348.
-1-348=-349 -2-174=-176 -3-116=-119 -4-87=-91 -6-58=-64 -12-29=-41
Tātaihia te tapeke mō ia takirua.
a=-58 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -64.
\left(x-58\right)\left(x-6\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=58 x=6
Hei kimi otinga whārite, me whakaoti te x-58=0 me te x-6=0.
a+b=-64 ab=1\times 348=348
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+348. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-348 -2,-174 -3,-116 -4,-87 -6,-58 -12,-29
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 348.
-1-348=-349 -2-174=-176 -3-116=-119 -4-87=-91 -6-58=-64 -12-29=-41
Tātaihia te tapeke mō ia takirua.
a=-58 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -64.
\left(x^{2}-58x\right)+\left(-6x+348\right)
Tuhia anō te x^{2}-64x+348 hei \left(x^{2}-58x\right)+\left(-6x+348\right).
x\left(x-58\right)-6\left(x-58\right)
Tauwehea te x i te tuatahi me te -6 i te rōpū tuarua.
\left(x-58\right)\left(x-6\right)
Whakatauwehea atu te kīanga pātahi x-58 mā te whakamahi i te āhuatanga tātai tohatoha.
x=58 x=6
Hei kimi otinga whārite, me whakaoti te x-58=0 me te x-6=0.
x^{2}-64x+348=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 348}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -64 mō b, me 348 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 348}}{2}
Pūrua -64.
x=\frac{-\left(-64\right)±\sqrt{4096-1392}}{2}
Whakareatia -4 ki te 348.
x=\frac{-\left(-64\right)±\sqrt{2704}}{2}
Tāpiri 4096 ki te -1392.
x=\frac{-\left(-64\right)±52}{2}
Tuhia te pūtakerua o te 2704.
x=\frac{64±52}{2}
Ko te tauaro o -64 ko 64.
x=\frac{116}{2}
Nā, me whakaoti te whārite x=\frac{64±52}{2} ina he tāpiri te ±. Tāpiri 64 ki te 52.
x=58
Whakawehe 116 ki te 2.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{64±52}{2} ina he tango te ±. Tango 52 mai i 64.
x=6
Whakawehe 12 ki te 2.
x=58 x=6
Kua oti te whārite te whakatau.
x^{2}-64x+348=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-64x+348-348=-348
Me tango 348 mai i ngā taha e rua o te whārite.
x^{2}-64x=-348
Mā te tango i te 348 i a ia ake anō ka toe ko te 0.
x^{2}-64x+\left(-32\right)^{2}=-348+\left(-32\right)^{2}
Whakawehea te -64, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -32. Nā, tāpiria te pūrua o te -32 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-64x+1024=-348+1024
Pūrua -32.
x^{2}-64x+1024=676
Tāpiri -348 ki te 1024.
\left(x-32\right)^{2}=676
Tauwehea x^{2}-64x+1024. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-32\right)^{2}}=\sqrt{676}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-32=26 x-32=-26
Whakarūnātia.
x=58 x=6
Me tāpiri 32 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}