Whakaoti mō x
x=24
x=36
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-60 ab=864
Hei whakaoti i te whārite, whakatauwehea te x^{2}-60x+864 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-864 -2,-432 -3,-288 -4,-216 -6,-144 -8,-108 -9,-96 -12,-72 -16,-54 -18,-48 -24,-36 -27,-32
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 864.
-1-864=-865 -2-432=-434 -3-288=-291 -4-216=-220 -6-144=-150 -8-108=-116 -9-96=-105 -12-72=-84 -16-54=-70 -18-48=-66 -24-36=-60 -27-32=-59
Tātaihia te tapeke mō ia takirua.
a=-36 b=-24
Ko te otinga te takirua ka hoatu i te tapeke -60.
\left(x-36\right)\left(x-24\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=36 x=24
Hei kimi otinga whārite, me whakaoti te x-36=0 me te x-24=0.
a+b=-60 ab=1\times 864=864
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+864. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-864 -2,-432 -3,-288 -4,-216 -6,-144 -8,-108 -9,-96 -12,-72 -16,-54 -18,-48 -24,-36 -27,-32
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 864.
-1-864=-865 -2-432=-434 -3-288=-291 -4-216=-220 -6-144=-150 -8-108=-116 -9-96=-105 -12-72=-84 -16-54=-70 -18-48=-66 -24-36=-60 -27-32=-59
Tātaihia te tapeke mō ia takirua.
a=-36 b=-24
Ko te otinga te takirua ka hoatu i te tapeke -60.
\left(x^{2}-36x\right)+\left(-24x+864\right)
Tuhia anō te x^{2}-60x+864 hei \left(x^{2}-36x\right)+\left(-24x+864\right).
x\left(x-36\right)-24\left(x-36\right)
Tauwehea te x i te tuatahi me te -24 i te rōpū tuarua.
\left(x-36\right)\left(x-24\right)
Whakatauwehea atu te kīanga pātahi x-36 mā te whakamahi i te āhuatanga tātai tohatoha.
x=36 x=24
Hei kimi otinga whārite, me whakaoti te x-36=0 me te x-24=0.
x^{2}-60x+864=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 864}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -60 mō b, me 864 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 864}}{2}
Pūrua -60.
x=\frac{-\left(-60\right)±\sqrt{3600-3456}}{2}
Whakareatia -4 ki te 864.
x=\frac{-\left(-60\right)±\sqrt{144}}{2}
Tāpiri 3600 ki te -3456.
x=\frac{-\left(-60\right)±12}{2}
Tuhia te pūtakerua o te 144.
x=\frac{60±12}{2}
Ko te tauaro o -60 ko 60.
x=\frac{72}{2}
Nā, me whakaoti te whārite x=\frac{60±12}{2} ina he tāpiri te ±. Tāpiri 60 ki te 12.
x=36
Whakawehe 72 ki te 2.
x=\frac{48}{2}
Nā, me whakaoti te whārite x=\frac{60±12}{2} ina he tango te ±. Tango 12 mai i 60.
x=24
Whakawehe 48 ki te 2.
x=36 x=24
Kua oti te whārite te whakatau.
x^{2}-60x+864=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-60x+864-864=-864
Me tango 864 mai i ngā taha e rua o te whārite.
x^{2}-60x=-864
Mā te tango i te 864 i a ia ake anō ka toe ko te 0.
x^{2}-60x+\left(-30\right)^{2}=-864+\left(-30\right)^{2}
Whakawehea te -60, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -30. Nā, tāpiria te pūrua o te -30 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-60x+900=-864+900
Pūrua -30.
x^{2}-60x+900=36
Tāpiri -864 ki te 900.
\left(x-30\right)^{2}=36
Tauwehea x^{2}-60x+900. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-30\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-30=6 x-30=-6
Whakarūnātia.
x=36 x=24
Me tāpiri 30 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}