Tauwehe
\left(x-5\right)^{2}
Aromātai
\left(x-5\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-10x+25
Whakarea ka paheko i ngā kīanga tau ōrite.
a+b=-10 ab=1\times 25=25
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-25 -5,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 25.
-1-25=-26 -5-5=-10
Tātaihia te tapeke mō ia takirua.
a=-5 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(x^{2}-5x\right)+\left(-5x+25\right)
Tuhia anō te x^{2}-10x+25 hei \left(x^{2}-5x\right)+\left(-5x+25\right).
x\left(x-5\right)-5\left(x-5\right)
Tauwehea te x i te tuatahi me te -5 i te rōpū tuarua.
\left(x-5\right)\left(x-5\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-5\right)^{2}
Tuhia anōtia hei pūrua huarua.
x^{2}-10x+25
Pahekotia te -5x me -5x, ka -10x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}