Whakaoti mō x (complex solution)
x=\frac{-5+\sqrt{3}i}{2}\approx -2.5+0.866025404i
x=\frac{-\sqrt{3}i-5}{2}\approx -2.5-0.866025404i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-5\left(-1\right)x+7=0
Whakareatia te -1 ki te 5, ka -5.
x^{2}+5x+7=0
Whakareatia te -5 ki te -1, ka 5.
x=\frac{-5±\sqrt{5^{2}-4\times 7}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 5 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 7}}{2}
Pūrua 5.
x=\frac{-5±\sqrt{25-28}}{2}
Whakareatia -4 ki te 7.
x=\frac{-5±\sqrt{-3}}{2}
Tāpiri 25 ki te -28.
x=\frac{-5±\sqrt{3}i}{2}
Tuhia te pūtakerua o te -3.
x=\frac{-5+\sqrt{3}i}{2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{3}i}{2} ina he tāpiri te ±. Tāpiri -5 ki te i\sqrt{3}.
x=\frac{-\sqrt{3}i-5}{2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{3}i}{2} ina he tango te ±. Tango i\sqrt{3} mai i -5.
x=\frac{-5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-5}{2}
Kua oti te whārite te whakatau.
x^{2}-5\left(-x\right)=-7
Tangohia te 7 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-5\left(-1\right)x=-7
Whakareatia te -1 ki te 5, ka -5.
x^{2}+5x=-7
Whakareatia te -5 ki te -1, ka 5.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-7+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=-7+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=-\frac{3}{4}
Tāpiri -7 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=-\frac{3}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{\sqrt{3}i}{2} x+\frac{5}{2}=-\frac{\sqrt{3}i}{2}
Whakarūnātia.
x=\frac{-5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}