Whakaoti mō x
x=-1
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-4x-5=0
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
a+b=-4 ab=-5
Hei whakaoti i te whārite, whakatauwehea te x^{2}-4x-5 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-5 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-5\right)\left(x+1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=5 x=-1
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+1=0.
x^{2}-4x-5=0
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
a+b=-4 ab=1\left(-5\right)=-5
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-5 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-5x\right)+\left(x-5\right)
Tuhia anō te x^{2}-4x-5 hei \left(x^{2}-5x\right)+\left(x-5\right).
x\left(x-5\right)+x-5
Whakatauwehea atu x i te x^{2}-5x.
\left(x-5\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-1
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+1=0.
x^{2}-4x-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Whakareatia -4 ki te -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Tāpiri 16 ki te 20.
x=\frac{-\left(-4\right)±6}{2}
Tuhia te pūtakerua o te 36.
x=\frac{4±6}{2}
Ko te tauaro o -4 ko 4.
x=\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{4±6}{2} ina he tāpiri te ±. Tāpiri 4 ki te 6.
x=5
Whakawehe 10 ki te 2.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{4±6}{2} ina he tango te ±. Tango 6 mai i 4.
x=-1
Whakawehe -2 ki te 2.
x=5 x=-1
Kua oti te whārite te whakatau.
x^{2}-4x-5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-4x-5-\left(-5\right)=-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
x^{2}-4x=-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
x^{2}-4x=5
Tango -5 mai i 0.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=5+4
Pūrua -2.
x^{2}-4x+4=9
Tāpiri 5 ki te 4.
\left(x-2\right)^{2}=9
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=3 x-2=-3
Whakarūnātia.
x=5 x=-1
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}