Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-8x+16+x^{2}-28x+200=-x-4x+104
Whakareatia ngā taha e rua o te whārite ki te 2.
3x^{2}-8x+16-28x+200=-x-4x+104
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}-36x+16+200=-x-4x+104
Pahekotia te -8x me -28x, ka -36x.
3x^{2}-36x+216=-x-4x+104
Tāpirihia te 16 ki te 200, ka 216.
3x^{2}-36x+216+x=-4x+104
Me tāpiri te x ki ngā taha e rua.
3x^{2}-35x+216=-4x+104
Pahekotia te -36x me x, ka -35x.
3x^{2}-35x+216+4x=104
Me tāpiri te 4x ki ngā taha e rua.
3x^{2}-31x+216=104
Pahekotia te -35x me 4x, ka -31x.
3x^{2}-31x+216-104=0
Tangohia te 104 mai i ngā taha e rua.
3x^{2}-31x+112=0
Tangohia te 104 i te 216, ka 112.
x=\frac{-\left(-31\right)±\sqrt{\left(-31\right)^{2}-4\times 3\times 112}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -31 mō b, me 112 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-31\right)±\sqrt{961-4\times 3\times 112}}{2\times 3}
Pūrua -31.
x=\frac{-\left(-31\right)±\sqrt{961-12\times 112}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-31\right)±\sqrt{961-1344}}{2\times 3}
Whakareatia -12 ki te 112.
x=\frac{-\left(-31\right)±\sqrt{-383}}{2\times 3}
Tāpiri 961 ki te -1344.
x=\frac{-\left(-31\right)±\sqrt{383}i}{2\times 3}
Tuhia te pūtakerua o te -383.
x=\frac{31±\sqrt{383}i}{2\times 3}
Ko te tauaro o -31 ko 31.
x=\frac{31±\sqrt{383}i}{6}
Whakareatia 2 ki te 3.
x=\frac{31+\sqrt{383}i}{6}
Nā, me whakaoti te whārite x=\frac{31±\sqrt{383}i}{6} ina he tāpiri te ±. Tāpiri 31 ki te i\sqrt{383}.
x=\frac{-\sqrt{383}i+31}{6}
Nā, me whakaoti te whārite x=\frac{31±\sqrt{383}i}{6} ina he tango te ±. Tango i\sqrt{383} mai i 31.
x=\frac{31+\sqrt{383}i}{6} x=\frac{-\sqrt{383}i+31}{6}
Kua oti te whārite te whakatau.
2x^{2}-8x+16+x^{2}-28x+200=-x-4x+104
Whakareatia ngā taha e rua o te whārite ki te 2.
3x^{2}-8x+16-28x+200=-x-4x+104
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}-36x+16+200=-x-4x+104
Pahekotia te -8x me -28x, ka -36x.
3x^{2}-36x+216=-x-4x+104
Tāpirihia te 16 ki te 200, ka 216.
3x^{2}-36x+216+x=-4x+104
Me tāpiri te x ki ngā taha e rua.
3x^{2}-35x+216=-4x+104
Pahekotia te -36x me x, ka -35x.
3x^{2}-35x+216+4x=104
Me tāpiri te 4x ki ngā taha e rua.
3x^{2}-31x+216=104
Pahekotia te -35x me 4x, ka -31x.
3x^{2}-31x=104-216
Tangohia te 216 mai i ngā taha e rua.
3x^{2}-31x=-112
Tangohia te 216 i te 104, ka -112.
\frac{3x^{2}-31x}{3}=-\frac{112}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{31}{3}x=-\frac{112}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{31}{3}x+\left(-\frac{31}{6}\right)^{2}=-\frac{112}{3}+\left(-\frac{31}{6}\right)^{2}
Whakawehea te -\frac{31}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{31}{6}. Nā, tāpiria te pūrua o te -\frac{31}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{31}{3}x+\frac{961}{36}=-\frac{112}{3}+\frac{961}{36}
Pūruatia -\frac{31}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{31}{3}x+\frac{961}{36}=-\frac{383}{36}
Tāpiri -\frac{112}{3} ki te \frac{961}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{31}{6}\right)^{2}=-\frac{383}{36}
Tauwehea x^{2}-\frac{31}{3}x+\frac{961}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{31}{6}\right)^{2}}=\sqrt{-\frac{383}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{31}{6}=\frac{\sqrt{383}i}{6} x-\frac{31}{6}=-\frac{\sqrt{383}i}{6}
Whakarūnātia.
x=\frac{31+\sqrt{383}i}{6} x=\frac{-\sqrt{383}i+31}{6}
Me tāpiri \frac{31}{6} ki ngā taha e rua o te whārite.