Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-42x+45=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 45}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 45}}{2}
Pūrua -42.
x=\frac{-\left(-42\right)±\sqrt{1764-180}}{2}
Whakareatia -4 ki te 45.
x=\frac{-\left(-42\right)±\sqrt{1584}}{2}
Tāpiri 1764 ki te -180.
x=\frac{-\left(-42\right)±12\sqrt{11}}{2}
Tuhia te pūtakerua o te 1584.
x=\frac{42±12\sqrt{11}}{2}
Ko te tauaro o -42 ko 42.
x=\frac{12\sqrt{11}+42}{2}
Nā, me whakaoti te whārite x=\frac{42±12\sqrt{11}}{2} ina he tāpiri te ±. Tāpiri 42 ki te 12\sqrt{11}.
x=6\sqrt{11}+21
Whakawehe 42+12\sqrt{11} ki te 2.
x=\frac{42-12\sqrt{11}}{2}
Nā, me whakaoti te whārite x=\frac{42±12\sqrt{11}}{2} ina he tango te ±. Tango 12\sqrt{11} mai i 42.
x=21-6\sqrt{11}
Whakawehe 42-12\sqrt{11} ki te 2.
x^{2}-42x+45=\left(x-\left(6\sqrt{11}+21\right)\right)\left(x-\left(21-6\sqrt{11}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 21+6\sqrt{11} mō te x_{1} me te 21-6\sqrt{11} mō te x_{2}.