Whakaoti mō x
x=4\sqrt{915}+203\approx 323.995867698
x=203-4\sqrt{915}\approx 82.004132302
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-406x+26569=0
Tātaihia te 163 mā te pū o 2, kia riro ko 26569.
x=\frac{-\left(-406\right)±\sqrt{\left(-406\right)^{2}-4\times 26569}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -406 mō b, me 26569 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-406\right)±\sqrt{164836-4\times 26569}}{2}
Pūrua -406.
x=\frac{-\left(-406\right)±\sqrt{164836-106276}}{2}
Whakareatia -4 ki te 26569.
x=\frac{-\left(-406\right)±\sqrt{58560}}{2}
Tāpiri 164836 ki te -106276.
x=\frac{-\left(-406\right)±8\sqrt{915}}{2}
Tuhia te pūtakerua o te 58560.
x=\frac{406±8\sqrt{915}}{2}
Ko te tauaro o -406 ko 406.
x=\frac{8\sqrt{915}+406}{2}
Nā, me whakaoti te whārite x=\frac{406±8\sqrt{915}}{2} ina he tāpiri te ±. Tāpiri 406 ki te 8\sqrt{915}.
x=4\sqrt{915}+203
Whakawehe 406+8\sqrt{915} ki te 2.
x=\frac{406-8\sqrt{915}}{2}
Nā, me whakaoti te whārite x=\frac{406±8\sqrt{915}}{2} ina he tango te ±. Tango 8\sqrt{915} mai i 406.
x=203-4\sqrt{915}
Whakawehe 406-8\sqrt{915} ki te 2.
x=4\sqrt{915}+203 x=203-4\sqrt{915}
Kua oti te whārite te whakatau.
x^{2}-406x+26569=0
Tātaihia te 163 mā te pū o 2, kia riro ko 26569.
x^{2}-406x=-26569
Tangohia te 26569 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-406x+\left(-203\right)^{2}=-26569+\left(-203\right)^{2}
Whakawehea te -406, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -203. Nā, tāpiria te pūrua o te -203 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-406x+41209=-26569+41209
Pūrua -203.
x^{2}-406x+41209=14640
Tāpiri -26569 ki te 41209.
\left(x-203\right)^{2}=14640
Tauwehea x^{2}-406x+41209. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-203\right)^{2}}=\sqrt{14640}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-203=4\sqrt{915} x-203=-4\sqrt{915}
Whakarūnātia.
x=4\sqrt{915}+203 x=203-4\sqrt{915}
Me tāpiri 203 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}