Whakaoti mō x
x=\frac{\sqrt{915}}{25}+2.03\approx 3.239958677
x=-\frac{\sqrt{915}}{25}+2.03\approx 0.820041323
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-4.06x+2.6569=0
Tātaihia te 1.63 mā te pū o 2, kia riro ko 2.6569.
x=\frac{-\left(-4.06\right)±\sqrt{\left(-4.06\right)^{2}-4\times 2.6569}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4.06 mō b, me 2.6569 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4.06\right)±\sqrt{16.4836-4\times 2.6569}}{2}
Pūruatia -4.06 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-4.06\right)±\sqrt{\frac{41209-26569}{2500}}}{2}
Whakareatia -4 ki te 2.6569.
x=\frac{-\left(-4.06\right)±\sqrt{5.856}}{2}
Tāpiri 16.4836 ki te -10.6276 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-4.06\right)±\frac{2\sqrt{915}}{25}}{2}
Tuhia te pūtakerua o te 5.856.
x=\frac{4.06±\frac{2\sqrt{915}}{25}}{2}
Ko te tauaro o -4.06 ko 4.06.
x=\frac{\frac{2\sqrt{915}}{25}+\frac{203}{50}}{2}
Nā, me whakaoti te whārite x=\frac{4.06±\frac{2\sqrt{915}}{25}}{2} ina he tāpiri te ±. Tāpiri 4.06 ki te \frac{2\sqrt{915}}{25}.
x=\frac{\sqrt{915}}{25}+\frac{203}{100}
Whakawehe \frac{203}{50}+\frac{2\sqrt{915}}{25} ki te 2.
x=\frac{-\frac{2\sqrt{915}}{25}+\frac{203}{50}}{2}
Nā, me whakaoti te whārite x=\frac{4.06±\frac{2\sqrt{915}}{25}}{2} ina he tango te ±. Tango \frac{2\sqrt{915}}{25} mai i 4.06.
x=-\frac{\sqrt{915}}{25}+\frac{203}{100}
Whakawehe \frac{203}{50}-\frac{2\sqrt{915}}{25} ki te 2.
x=\frac{\sqrt{915}}{25}+\frac{203}{100} x=-\frac{\sqrt{915}}{25}+\frac{203}{100}
Kua oti te whārite te whakatau.
x^{2}-4.06x+2.6569=0
Tātaihia te 1.63 mā te pū o 2, kia riro ko 2.6569.
x^{2}-4.06x=-2.6569
Tangohia te 2.6569 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-4.06x+\left(-2.03\right)^{2}=-2.6569+\left(-2.03\right)^{2}
Whakawehea te -4.06, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2.03. Nā, tāpiria te pūrua o te -2.03 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4.06x+4.1209=\frac{-26569+41209}{10000}
Pūruatia -2.03 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-4.06x+4.1209=1.464
Tāpiri -2.6569 ki te 4.1209 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-2.03\right)^{2}=1.464
Tauwehea x^{2}-4.06x+4.1209. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2.03\right)^{2}}=\sqrt{1.464}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2.03=\frac{\sqrt{915}}{25} x-2.03=-\frac{\sqrt{915}}{25}
Whakarūnātia.
x=\frac{\sqrt{915}}{25}+\frac{203}{100} x=-\frac{\sqrt{915}}{25}+\frac{203}{100}
Me tāpiri 2.03 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}