Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-3x-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+8}}{2}
Whakareatia -4 ki te -2.
x=\frac{-\left(-3\right)±\sqrt{17}}{2}
Tāpiri 9 ki te 8.
x=\frac{3±\sqrt{17}}{2}
Ko te tauaro o -3 ko 3.
x=\frac{\sqrt{17}+3}{2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{17}}{2} ina he tāpiri te ±. Tāpiri 3 ki te \sqrt{17}.
x=\frac{3-\sqrt{17}}{2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{17}}{2} ina he tango te ±. Tango \sqrt{17} mai i 3.
x^{2}-3x-2=\left(x-\frac{\sqrt{17}+3}{2}\right)\left(x-\frac{3-\sqrt{17}}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3+\sqrt{17}}{2} mō te x_{1} me te \frac{3-\sqrt{17}}{2} mō te x_{2}.