Whakaoti mō x
x\in \left(\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}+3}{2}\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-3x+1=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -3 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{3±\sqrt{5}}{2}
Mahia ngā tātaitai.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
Whakaotia te whārite x=\frac{3±\sqrt{5}}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(x-\frac{\sqrt{5}+3}{2}\right)\left(x-\frac{3-\sqrt{5}}{2}\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{\sqrt{5}+3}{2}>0 x-\frac{3-\sqrt{5}}{2}<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-\frac{\sqrt{5}+3}{2} me te x-\frac{3-\sqrt{5}}{2}. Whakaarohia te tauira ina he tōrunga te x-\frac{\sqrt{5}+3}{2} he tōraro te x-\frac{3-\sqrt{5}}{2}.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-\frac{3-\sqrt{5}}{2}>0 x-\frac{\sqrt{5}+3}{2}<0
Whakaarohia te tauira ina he tōrunga te x-\frac{3-\sqrt{5}}{2} he tōraro te x-\frac{\sqrt{5}+3}{2}.
x\in \left(\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}+3}{2}\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}+3}{2}\right).
x\in \left(\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}+3}{2}\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}