Whakaoti mō x
x=\frac{1}{2}=0.5
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-3x-3x^{2}=-4x
Tangohia te 3x^{2} mai i ngā taha e rua.
-2x^{2}-3x=-4x
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
-2x^{2}-3x+4x=0
Me tāpiri te 4x ki ngā taha e rua.
-2x^{2}+x=0
Pahekotia te -3x me 4x, ka x.
x\left(-2x+1\right)=0
Tauwehea te x.
x=0 x=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te -2x+1=0.
x^{2}-3x-3x^{2}=-4x
Tangohia te 3x^{2} mai i ngā taha e rua.
-2x^{2}-3x=-4x
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
-2x^{2}-3x+4x=0
Me tāpiri te 4x ki ngā taha e rua.
-2x^{2}+x=0
Pahekotia te -3x me 4x, ka x.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\left(-2\right)}
Tuhia te pūtakerua o te 1^{2}.
x=\frac{-1±1}{-4}
Whakareatia 2 ki te -2.
x=\frac{0}{-4}
Nā, me whakaoti te whārite x=\frac{-1±1}{-4} ina he tāpiri te ±. Tāpiri -1 ki te 1.
x=0
Whakawehe 0 ki te -4.
x=-\frac{2}{-4}
Nā, me whakaoti te whārite x=\frac{-1±1}{-4} ina he tango te ±. Tango 1 mai i -1.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=0 x=\frac{1}{2}
Kua oti te whārite te whakatau.
x^{2}-3x-3x^{2}=-4x
Tangohia te 3x^{2} mai i ngā taha e rua.
-2x^{2}-3x=-4x
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
-2x^{2}-3x+4x=0
Me tāpiri te 4x ki ngā taha e rua.
-2x^{2}+x=0
Pahekotia te -3x me 4x, ka x.
\frac{-2x^{2}+x}{-2}=\frac{0}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{1}{-2}x=\frac{0}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-\frac{1}{2}x=\frac{0}{-2}
Whakawehe 1 ki te -2.
x^{2}-\frac{1}{2}x=0
Whakawehe 0 ki te -2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
Whakarūnātia.
x=\frac{1}{2} x=0
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}