Whakaoti mō x
x=\frac{3\sqrt{37}}{37}+1\approx 1.493196962
x=-\frac{3\sqrt{37}}{37}+1\approx 0.506803038
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-2x+\frac{28}{37}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{28}{37}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me \frac{28}{37} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{28}{37}}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-\frac{112}{37}}}{2}
Whakareatia -4 ki te \frac{28}{37}.
x=\frac{-\left(-2\right)±\sqrt{\frac{36}{37}}}{2}
Tāpiri 4 ki te -\frac{112}{37}.
x=\frac{-\left(-2\right)±\frac{6\sqrt{37}}{37}}{2}
Tuhia te pūtakerua o te \frac{36}{37}.
x=\frac{2±\frac{6\sqrt{37}}{37}}{2}
Ko te tauaro o -2 ko 2.
x=\frac{\frac{6\sqrt{37}}{37}+2}{2}
Nā, me whakaoti te whārite x=\frac{2±\frac{6\sqrt{37}}{37}}{2} ina he tāpiri te ±. Tāpiri 2 ki te \frac{6\sqrt{37}}{37}.
x=\frac{3\sqrt{37}}{37}+1
Whakawehe 2+\frac{6\sqrt{37}}{37} ki te 2.
x=\frac{-\frac{6\sqrt{37}}{37}+2}{2}
Nā, me whakaoti te whārite x=\frac{2±\frac{6\sqrt{37}}{37}}{2} ina he tango te ±. Tango \frac{6\sqrt{37}}{37} mai i 2.
x=-\frac{3\sqrt{37}}{37}+1
Whakawehe 2-\frac{6\sqrt{37}}{37} ki te 2.
x=\frac{3\sqrt{37}}{37}+1 x=-\frac{3\sqrt{37}}{37}+1
Kua oti te whārite te whakatau.
x^{2}-2x+\frac{28}{37}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-2x+\frac{28}{37}-\frac{28}{37}=-\frac{28}{37}
Me tango \frac{28}{37} mai i ngā taha e rua o te whārite.
x^{2}-2x=-\frac{28}{37}
Mā te tango i te \frac{28}{37} i a ia ake anō ka toe ko te 0.
x^{2}-2x+1=-\frac{28}{37}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{9}{37}
Tāpiri -\frac{28}{37} ki te 1.
\left(x-1\right)^{2}=\frac{9}{37}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{37}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{3\sqrt{37}}{37} x-1=-\frac{3\sqrt{37}}{37}
Whakarūnātia.
x=\frac{3\sqrt{37}}{37}+1 x=-\frac{3\sqrt{37}}{37}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}