Whakaoti mō x
x=8
x=13
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-21 ab=104
Hei whakaoti i te whārite, whakatauwehea te x^{2}-21x+104 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-104 -2,-52 -4,-26 -8,-13
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 104.
-1-104=-105 -2-52=-54 -4-26=-30 -8-13=-21
Tātaihia te tapeke mō ia takirua.
a=-13 b=-8
Ko te otinga te takirua ka hoatu i te tapeke -21.
\left(x-13\right)\left(x-8\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=13 x=8
Hei kimi otinga whārite, me whakaoti te x-13=0 me te x-8=0.
a+b=-21 ab=1\times 104=104
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+104. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-104 -2,-52 -4,-26 -8,-13
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 104.
-1-104=-105 -2-52=-54 -4-26=-30 -8-13=-21
Tātaihia te tapeke mō ia takirua.
a=-13 b=-8
Ko te otinga te takirua ka hoatu i te tapeke -21.
\left(x^{2}-13x\right)+\left(-8x+104\right)
Tuhia anō te x^{2}-21x+104 hei \left(x^{2}-13x\right)+\left(-8x+104\right).
x\left(x-13\right)-8\left(x-13\right)
Tauwehea te x i te tuatahi me te -8 i te rōpū tuarua.
\left(x-13\right)\left(x-8\right)
Whakatauwehea atu te kīanga pātahi x-13 mā te whakamahi i te āhuatanga tātai tohatoha.
x=13 x=8
Hei kimi otinga whārite, me whakaoti te x-13=0 me te x-8=0.
x^{2}-21x+104=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 104}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -21 mō b, me 104 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 104}}{2}
Pūrua -21.
x=\frac{-\left(-21\right)±\sqrt{441-416}}{2}
Whakareatia -4 ki te 104.
x=\frac{-\left(-21\right)±\sqrt{25}}{2}
Tāpiri 441 ki te -416.
x=\frac{-\left(-21\right)±5}{2}
Tuhia te pūtakerua o te 25.
x=\frac{21±5}{2}
Ko te tauaro o -21 ko 21.
x=\frac{26}{2}
Nā, me whakaoti te whārite x=\frac{21±5}{2} ina he tāpiri te ±. Tāpiri 21 ki te 5.
x=13
Whakawehe 26 ki te 2.
x=\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{21±5}{2} ina he tango te ±. Tango 5 mai i 21.
x=8
Whakawehe 16 ki te 2.
x=13 x=8
Kua oti te whārite te whakatau.
x^{2}-21x+104=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-21x+104-104=-104
Me tango 104 mai i ngā taha e rua o te whārite.
x^{2}-21x=-104
Mā te tango i te 104 i a ia ake anō ka toe ko te 0.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-104+\left(-\frac{21}{2}\right)^{2}
Whakawehea te -21, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{21}{2}. Nā, tāpiria te pūrua o te -\frac{21}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-21x+\frac{441}{4}=-104+\frac{441}{4}
Pūruatia -\frac{21}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-21x+\frac{441}{4}=\frac{25}{4}
Tāpiri -104 ki te \frac{441}{4}.
\left(x-\frac{21}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-21x+\frac{441}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{21}{2}=\frac{5}{2} x-\frac{21}{2}=-\frac{5}{2}
Whakarūnātia.
x=13 x=8
Me tāpiri \frac{21}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}