Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-20x+40=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 40}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 40}}{2}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-160}}{2}
Whakareatia -4 ki te 40.
x=\frac{-\left(-20\right)±\sqrt{240}}{2}
Tāpiri 400 ki te -160.
x=\frac{-\left(-20\right)±4\sqrt{15}}{2}
Tuhia te pūtakerua o te 240.
x=\frac{20±4\sqrt{15}}{2}
Ko te tauaro o -20 ko 20.
x=\frac{4\sqrt{15}+20}{2}
Nā, me whakaoti te whārite x=\frac{20±4\sqrt{15}}{2} ina he tāpiri te ±. Tāpiri 20 ki te 4\sqrt{15}.
x=2\sqrt{15}+10
Whakawehe 20+4\sqrt{15} ki te 2.
x=\frac{20-4\sqrt{15}}{2}
Nā, me whakaoti te whārite x=\frac{20±4\sqrt{15}}{2} ina he tango te ±. Tango 4\sqrt{15} mai i 20.
x=10-2\sqrt{15}
Whakawehe 20-4\sqrt{15} ki te 2.
x^{2}-20x+40=\left(x-\left(2\sqrt{15}+10\right)\right)\left(x-\left(10-2\sqrt{15}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 10+2\sqrt{15} mō te x_{1} me te 10-2\sqrt{15} mō te x_{2}.