Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-20 ab=36
Hei whakaoti i te whārite, whakatauwehea te x^{2}-20x+36 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-18 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(x-18\right)\left(x-2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=18 x=2
Hei kimi otinga whārite, me whakaoti te x-18=0 me te x-2=0.
a+b=-20 ab=1\times 36=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-18 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(x^{2}-18x\right)+\left(-2x+36\right)
Tuhia anō te x^{2}-20x+36 hei \left(x^{2}-18x\right)+\left(-2x+36\right).
x\left(x-18\right)-2\left(x-18\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-18\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-18 mā te whakamahi i te āhuatanga tātai tohatoha.
x=18 x=2
Hei kimi otinga whārite, me whakaoti te x-18=0 me te x-2=0.
x^{2}-20x+36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 36}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -20 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 36}}{2}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-144}}{2}
Whakareatia -4 ki te 36.
x=\frac{-\left(-20\right)±\sqrt{256}}{2}
Tāpiri 400 ki te -144.
x=\frac{-\left(-20\right)±16}{2}
Tuhia te pūtakerua o te 256.
x=\frac{20±16}{2}
Ko te tauaro o -20 ko 20.
x=\frac{36}{2}
Nā, me whakaoti te whārite x=\frac{20±16}{2} ina he tāpiri te ±. Tāpiri 20 ki te 16.
x=18
Whakawehe 36 ki te 2.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{20±16}{2} ina he tango te ±. Tango 16 mai i 20.
x=2
Whakawehe 4 ki te 2.
x=18 x=2
Kua oti te whārite te whakatau.
x^{2}-20x+36=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-20x+36-36=-36
Me tango 36 mai i ngā taha e rua o te whārite.
x^{2}-20x=-36
Mā te tango i te 36 i a ia ake anō ka toe ko te 0.
x^{2}-20x+\left(-10\right)^{2}=-36+\left(-10\right)^{2}
Whakawehea te -20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -10. Nā, tāpiria te pūrua o te -10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-20x+100=-36+100
Pūrua -10.
x^{2}-20x+100=64
Tāpiri -36 ki te 100.
\left(x-10\right)^{2}=64
Tauwehea x^{2}-20x+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{64}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-10=8 x-10=-8
Whakarūnātia.
x=18 x=2
Me tāpiri 10 ki ngā taha e rua o te whārite.