Whakaoti mō x
x=-7
x=18
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-11x-126=0
Pahekotia te -18x me 7x, ka -11x.
a+b=-11 ab=-126
Hei whakaoti i te whārite, whakatauwehea te x^{2}-11x-126 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-126 2,-63 3,-42 6,-21 7,-18 9,-14
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -126.
1-126=-125 2-63=-61 3-42=-39 6-21=-15 7-18=-11 9-14=-5
Tātaihia te tapeke mō ia takirua.
a=-18 b=7
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x-18\right)\left(x+7\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=18 x=-7
Hei kimi otinga whārite, me whakaoti te x-18=0 me te x+7=0.
x^{2}-11x-126=0
Pahekotia te -18x me 7x, ka -11x.
a+b=-11 ab=1\left(-126\right)=-126
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-126. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-126 2,-63 3,-42 6,-21 7,-18 9,-14
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -126.
1-126=-125 2-63=-61 3-42=-39 6-21=-15 7-18=-11 9-14=-5
Tātaihia te tapeke mō ia takirua.
a=-18 b=7
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x^{2}-18x\right)+\left(7x-126\right)
Tuhia anō te x^{2}-11x-126 hei \left(x^{2}-18x\right)+\left(7x-126\right).
x\left(x-18\right)+7\left(x-18\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x-18\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x-18 mā te whakamahi i te āhuatanga tātai tohatoha.
x=18 x=-7
Hei kimi otinga whārite, me whakaoti te x-18=0 me te x+7=0.
x^{2}-11x-126=0
Pahekotia te -18x me 7x, ka -11x.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-126\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -11 mō b, me -126 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-126\right)}}{2}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121+504}}{2}
Whakareatia -4 ki te -126.
x=\frac{-\left(-11\right)±\sqrt{625}}{2}
Tāpiri 121 ki te 504.
x=\frac{-\left(-11\right)±25}{2}
Tuhia te pūtakerua o te 625.
x=\frac{11±25}{2}
Ko te tauaro o -11 ko 11.
x=\frac{36}{2}
Nā, me whakaoti te whārite x=\frac{11±25}{2} ina he tāpiri te ±. Tāpiri 11 ki te 25.
x=18
Whakawehe 36 ki te 2.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{11±25}{2} ina he tango te ±. Tango 25 mai i 11.
x=-7
Whakawehe -14 ki te 2.
x=18 x=-7
Kua oti te whārite te whakatau.
x^{2}-11x-126=0
Pahekotia te -18x me 7x, ka -11x.
x^{2}-11x=126
Me tāpiri te 126 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=126+\left(-\frac{11}{2}\right)^{2}
Whakawehea te -11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{2}. Nā, tāpiria te pūrua o te -\frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-11x+\frac{121}{4}=126+\frac{121}{4}
Pūruatia -\frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-11x+\frac{121}{4}=\frac{625}{4}
Tāpiri 126 ki te \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{625}{4}
Tauwehea x^{2}-11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{2}=\frac{25}{2} x-\frac{11}{2}=-\frac{25}{2}
Whakarūnātia.
x=18 x=-7
Me tāpiri \frac{11}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}