Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-15x+7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 7}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 7}}{2}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-28}}{2}
Whakareatia -4 ki te 7.
x=\frac{-\left(-15\right)±\sqrt{197}}{2}
Tāpiri 225 ki te -28.
x=\frac{15±\sqrt{197}}{2}
Ko te tauaro o -15 ko 15.
x=\frac{\sqrt{197}+15}{2}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{197}}{2} ina he tāpiri te ±. Tāpiri 15 ki te \sqrt{197}.
x=\frac{15-\sqrt{197}}{2}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{197}}{2} ina he tango te ±. Tango \sqrt{197} mai i 15.
x^{2}-15x+7=\left(x-\frac{\sqrt{197}+15}{2}\right)\left(x-\frac{15-\sqrt{197}}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{15+\sqrt{197}}{2} mō te x_{1} me te \frac{15-\sqrt{197}}{2} mō te x_{2}.