Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-12x^{2}+40=0
Pahekotia te x^{2} me -13x^{2}, ka -12x^{2}.
-12x^{2}=-40
Tangohia te 40 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=\frac{-40}{-12}
Whakawehea ngā taha e rua ki te -12.
x^{2}=\frac{10}{3}
Whakahekea te hautanga \frac{-40}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
x=\frac{\sqrt{30}}{3} x=-\frac{\sqrt{30}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-12x^{2}+40=0
Pahekotia te x^{2} me -13x^{2}, ka -12x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-12\right)\times 40}}{2\left(-12\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -12 mō a, 0 mō b, me 40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-12\right)\times 40}}{2\left(-12\right)}
Pūrua 0.
x=\frac{0±\sqrt{48\times 40}}{2\left(-12\right)}
Whakareatia -4 ki te -12.
x=\frac{0±\sqrt{1920}}{2\left(-12\right)}
Whakareatia 48 ki te 40.
x=\frac{0±8\sqrt{30}}{2\left(-12\right)}
Tuhia te pūtakerua o te 1920.
x=\frac{0±8\sqrt{30}}{-24}
Whakareatia 2 ki te -12.
x=-\frac{\sqrt{30}}{3}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{30}}{-24} ina he tāpiri te ±.
x=\frac{\sqrt{30}}{3}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{30}}{-24} ina he tango te ±.
x=-\frac{\sqrt{30}}{3} x=\frac{\sqrt{30}}{3}
Kua oti te whārite te whakatau.