Whakaoti mō x
x=\sqrt{39}+6\approx 12.244997998
x=6-\sqrt{39}\approx -0.244997998
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-12x-5=-2
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}-12x-5-\left(-2\right)=-2-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
x^{2}-12x-5-\left(-2\right)=0
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
x^{2}-12x-3=0
Tango -2 mai i -5.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+12}}{2}
Whakareatia -4 ki te -3.
x=\frac{-\left(-12\right)±\sqrt{156}}{2}
Tāpiri 144 ki te 12.
x=\frac{-\left(-12\right)±2\sqrt{39}}{2}
Tuhia te pūtakerua o te 156.
x=\frac{12±2\sqrt{39}}{2}
Ko te tauaro o -12 ko 12.
x=\frac{2\sqrt{39}+12}{2}
Nā, me whakaoti te whārite x=\frac{12±2\sqrt{39}}{2} ina he tāpiri te ±. Tāpiri 12 ki te 2\sqrt{39}.
x=\sqrt{39}+6
Whakawehe 12+2\sqrt{39} ki te 2.
x=\frac{12-2\sqrt{39}}{2}
Nā, me whakaoti te whārite x=\frac{12±2\sqrt{39}}{2} ina he tango te ±. Tango 2\sqrt{39} mai i 12.
x=6-\sqrt{39}
Whakawehe 12-2\sqrt{39} ki te 2.
x=\sqrt{39}+6 x=6-\sqrt{39}
Kua oti te whārite te whakatau.
x^{2}-12x-5=-2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-12x-5-\left(-5\right)=-2-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
x^{2}-12x=-2-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
x^{2}-12x=3
Tango -5 mai i -2.
x^{2}-12x+\left(-6\right)^{2}=3+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=3+36
Pūrua -6.
x^{2}-12x+36=39
Tāpiri 3 ki te 36.
\left(x-6\right)^{2}=39
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{39}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=\sqrt{39} x-6=-\sqrt{39}
Whakarūnātia.
x=\sqrt{39}+6 x=6-\sqrt{39}
Me tāpiri 6 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}