Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-12x-112=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-112\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-112\right)}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+448}}{2}
Whakareatia -4 ki te -112.
x=\frac{-\left(-12\right)±\sqrt{592}}{2}
Tāpiri 144 ki te 448.
x=\frac{-\left(-12\right)±4\sqrt{37}}{2}
Tuhia te pūtakerua o te 592.
x=\frac{12±4\sqrt{37}}{2}
Ko te tauaro o -12 ko 12.
x=\frac{4\sqrt{37}+12}{2}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{37}}{2} ina he tāpiri te ±. Tāpiri 12 ki te 4\sqrt{37}.
x=2\sqrt{37}+6
Whakawehe 12+4\sqrt{37} ki te 2.
x=\frac{12-4\sqrt{37}}{2}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{37}}{2} ina he tango te ±. Tango 4\sqrt{37} mai i 12.
x=6-2\sqrt{37}
Whakawehe 12-4\sqrt{37} ki te 2.
x^{2}-12x-112=\left(x-\left(2\sqrt{37}+6\right)\right)\left(x-\left(6-2\sqrt{37}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 6+2\sqrt{37} mō te x_{1} me te 6-2\sqrt{37} mō te x_{2}.