Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-12x+20=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 1\times 20}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -12 mō te b, me te 20 mō te c i te ture pūrua.
x=\frac{12±8}{2}
Mahia ngā tātaitai.
x=10 x=2
Whakaotia te whārite x=\frac{12±8}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(x-10\right)\left(x-2\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-10>0 x-2<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-10 me te x-2. Whakaarohia te tauira ina he tōrunga te x-10 he tōraro te x-2.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-2>0 x-10<0
Whakaarohia te tauira ina he tōrunga te x-2 he tōraro te x-10.
x\in \left(2,10\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(2,10\right).
x\in \left(2,10\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.