Whakaoti mō x
x=-20
x=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-10 ab=-600
Hei whakaoti i te whārite, whakatauwehea te x^{2}-10x-600 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-600 2,-300 3,-200 4,-150 5,-120 6,-100 8,-75 10,-60 12,-50 15,-40 20,-30 24,-25
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -600.
1-600=-599 2-300=-298 3-200=-197 4-150=-146 5-120=-115 6-100=-94 8-75=-67 10-60=-50 12-50=-38 15-40=-25 20-30=-10 24-25=-1
Tātaihia te tapeke mō ia takirua.
a=-30 b=20
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(x-30\right)\left(x+20\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=30 x=-20
Hei kimi otinga whārite, me whakaoti te x-30=0 me te x+20=0.
a+b=-10 ab=1\left(-600\right)=-600
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-600. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-600 2,-300 3,-200 4,-150 5,-120 6,-100 8,-75 10,-60 12,-50 15,-40 20,-30 24,-25
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -600.
1-600=-599 2-300=-298 3-200=-197 4-150=-146 5-120=-115 6-100=-94 8-75=-67 10-60=-50 12-50=-38 15-40=-25 20-30=-10 24-25=-1
Tātaihia te tapeke mō ia takirua.
a=-30 b=20
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(x^{2}-30x\right)+\left(20x-600\right)
Tuhia anō te x^{2}-10x-600 hei \left(x^{2}-30x\right)+\left(20x-600\right).
x\left(x-30\right)+20\left(x-30\right)
Tauwehea te x i te tuatahi me te 20 i te rōpū tuarua.
\left(x-30\right)\left(x+20\right)
Whakatauwehea atu te kīanga pātahi x-30 mā te whakamahi i te āhuatanga tātai tohatoha.
x=30 x=-20
Hei kimi otinga whārite, me whakaoti te x-30=0 me te x+20=0.
x^{2}-10x-600=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-600\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -10 mō b, me -600 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-600\right)}}{2}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100+2400}}{2}
Whakareatia -4 ki te -600.
x=\frac{-\left(-10\right)±\sqrt{2500}}{2}
Tāpiri 100 ki te 2400.
x=\frac{-\left(-10\right)±50}{2}
Tuhia te pūtakerua o te 2500.
x=\frac{10±50}{2}
Ko te tauaro o -10 ko 10.
x=\frac{60}{2}
Nā, me whakaoti te whārite x=\frac{10±50}{2} ina he tāpiri te ±. Tāpiri 10 ki te 50.
x=30
Whakawehe 60 ki te 2.
x=-\frac{40}{2}
Nā, me whakaoti te whārite x=\frac{10±50}{2} ina he tango te ±. Tango 50 mai i 10.
x=-20
Whakawehe -40 ki te 2.
x=30 x=-20
Kua oti te whārite te whakatau.
x^{2}-10x-600=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-10x-600-\left(-600\right)=-\left(-600\right)
Me tāpiri 600 ki ngā taha e rua o te whārite.
x^{2}-10x=-\left(-600\right)
Mā te tango i te -600 i a ia ake anō ka toe ko te 0.
x^{2}-10x=600
Tango -600 mai i 0.
x^{2}-10x+\left(-5\right)^{2}=600+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=600+25
Pūrua -5.
x^{2}-10x+25=625
Tāpiri 600 ki te 25.
\left(x-5\right)^{2}=625
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{625}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=25 x-5=-25
Whakarūnātia.
x=30 x=-20
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}