Whakaoti mō x
x=-3
x=31
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-\left(7+x\right)\left(\frac{7+x}{2}+x\right)=22
Whakareatia ngā taha e rua o te whārite ki te 2.
2x^{2}-\left(7\times \frac{7+x}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
Whakamahia te āhuatanga tohatoha hei whakarea te 7+x ki te \frac{7+x}{2}+x.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
Tuhia te 7\times \frac{7+x}{2} hei hautanga kotahi.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+\frac{x\left(7+x\right)}{2}+x^{2}\right)=22
Tuhia te x\times \frac{7+x}{2} hei hautanga kotahi.
2x^{2}-\left(\frac{7\left(7+x\right)+x\left(7+x\right)}{2}+7x+x^{2}\right)=22
Tā te mea he rite te tauraro o \frac{7\left(7+x\right)}{2} me \frac{x\left(7+x\right)}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2x^{2}-\left(\frac{49+7x+7x+x^{2}}{2}+7x+x^{2}\right)=22
Mahia ngā whakarea i roto o 7\left(7+x\right)+x\left(7+x\right).
2x^{2}-\left(\frac{49+14x+x^{2}}{2}+7x+x^{2}\right)=22
Whakakotahitia ngā kupu rite i 49+7x+7x+x^{2}.
2x^{2}-\frac{49+14x+x^{2}}{2}-7x-x^{2}=22
Hei kimi i te tauaro o \frac{49+14x+x^{2}}{2}+7x+x^{2}, kimihia te tauaro o ia taurangi.
x^{2}-\frac{49+14x+x^{2}}{2}-7x=22
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-\left(\frac{49}{2}+7x+\frac{1}{2}x^{2}\right)-7x=22
Whakawehea ia wā o 49+14x+x^{2} ki te 2, kia riro ko \frac{49}{2}+7x+\frac{1}{2}x^{2}.
x^{2}-\frac{49}{2}-7x-\frac{1}{2}x^{2}-7x=22
Hei kimi i te tauaro o \frac{49}{2}+7x+\frac{1}{2}x^{2}, kimihia te tauaro o ia taurangi.
\frac{1}{2}x^{2}-\frac{49}{2}-7x-7x=22
Pahekotia te x^{2} me -\frac{1}{2}x^{2}, ka \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-\frac{49}{2}-14x=22
Pahekotia te -7x me -7x, ka -14x.
\frac{1}{2}x^{2}-\frac{49}{2}-14x-22=0
Tangohia te 22 mai i ngā taha e rua.
\frac{1}{2}x^{2}-\frac{93}{2}-14x=0
Tangohia te 22 i te -\frac{49}{2}, ka -\frac{93}{2}.
\frac{1}{2}x^{2}-14x-\frac{93}{2}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times \frac{1}{2}\left(-\frac{93}{2}\right)}}{2\times \frac{1}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2} mō a, -14 mō b, me -\frac{93}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times \frac{1}{2}\left(-\frac{93}{2}\right)}}{2\times \frac{1}{2}}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-2\left(-\frac{93}{2}\right)}}{2\times \frac{1}{2}}
Whakareatia -4 ki te \frac{1}{2}.
x=\frac{-\left(-14\right)±\sqrt{196+93}}{2\times \frac{1}{2}}
Whakareatia -2 ki te -\frac{93}{2}.
x=\frac{-\left(-14\right)±\sqrt{289}}{2\times \frac{1}{2}}
Tāpiri 196 ki te 93.
x=\frac{-\left(-14\right)±17}{2\times \frac{1}{2}}
Tuhia te pūtakerua o te 289.
x=\frac{14±17}{2\times \frac{1}{2}}
Ko te tauaro o -14 ko 14.
x=\frac{14±17}{1}
Whakareatia 2 ki te \frac{1}{2}.
x=\frac{31}{1}
Nā, me whakaoti te whārite x=\frac{14±17}{1} ina he tāpiri te ±. Tāpiri 14 ki te 17.
x=31
Whakawehe 31 ki te 1.
x=-\frac{3}{1}
Nā, me whakaoti te whārite x=\frac{14±17}{1} ina he tango te ±. Tango 17 mai i 14.
x=-3
Whakawehe -3 ki te 1.
x=31 x=-3
Kua oti te whārite te whakatau.
2x^{2}-\left(7+x\right)\left(\frac{7+x}{2}+x\right)=22
Whakareatia ngā taha e rua o te whārite ki te 2.
2x^{2}-\left(7\times \frac{7+x}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
Whakamahia te āhuatanga tohatoha hei whakarea te 7+x ki te \frac{7+x}{2}+x.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
Tuhia te 7\times \frac{7+x}{2} hei hautanga kotahi.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+\frac{x\left(7+x\right)}{2}+x^{2}\right)=22
Tuhia te x\times \frac{7+x}{2} hei hautanga kotahi.
2x^{2}-\left(\frac{7\left(7+x\right)+x\left(7+x\right)}{2}+7x+x^{2}\right)=22
Tā te mea he rite te tauraro o \frac{7\left(7+x\right)}{2} me \frac{x\left(7+x\right)}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2x^{2}-\left(\frac{49+7x+7x+x^{2}}{2}+7x+x^{2}\right)=22
Mahia ngā whakarea i roto o 7\left(7+x\right)+x\left(7+x\right).
2x^{2}-\left(\frac{49+14x+x^{2}}{2}+7x+x^{2}\right)=22
Whakakotahitia ngā kupu rite i 49+7x+7x+x^{2}.
2x^{2}-\frac{49+14x+x^{2}}{2}-7x-x^{2}=22
Hei kimi i te tauaro o \frac{49+14x+x^{2}}{2}+7x+x^{2}, kimihia te tauaro o ia taurangi.
x^{2}-\frac{49+14x+x^{2}}{2}-7x=22
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-\left(\frac{49}{2}+7x+\frac{1}{2}x^{2}\right)-7x=22
Whakawehea ia wā o 49+14x+x^{2} ki te 2, kia riro ko \frac{49}{2}+7x+\frac{1}{2}x^{2}.
x^{2}-\frac{49}{2}-7x-\frac{1}{2}x^{2}-7x=22
Hei kimi i te tauaro o \frac{49}{2}+7x+\frac{1}{2}x^{2}, kimihia te tauaro o ia taurangi.
\frac{1}{2}x^{2}-\frac{49}{2}-7x-7x=22
Pahekotia te x^{2} me -\frac{1}{2}x^{2}, ka \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-\frac{49}{2}-14x=22
Pahekotia te -7x me -7x, ka -14x.
\frac{1}{2}x^{2}-14x=22+\frac{49}{2}
Me tāpiri te \frac{49}{2} ki ngā taha e rua.
\frac{1}{2}x^{2}-14x=\frac{93}{2}
Tāpirihia te 22 ki te \frac{49}{2}, ka \frac{93}{2}.
\frac{\frac{1}{2}x^{2}-14x}{\frac{1}{2}}=\frac{\frac{93}{2}}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{14}{\frac{1}{2}}\right)x=\frac{\frac{93}{2}}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
x^{2}-28x=\frac{\frac{93}{2}}{\frac{1}{2}}
Whakawehe -14 ki te \frac{1}{2} mā te whakarea -14 ki te tau huripoki o \frac{1}{2}.
x^{2}-28x=93
Whakawehe \frac{93}{2} ki te \frac{1}{2} mā te whakarea \frac{93}{2} ki te tau huripoki o \frac{1}{2}.
x^{2}-28x+\left(-14\right)^{2}=93+\left(-14\right)^{2}
Whakawehea te -28, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -14. Nā, tāpiria te pūrua o te -14 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-28x+196=93+196
Pūrua -14.
x^{2}-28x+196=289
Tāpiri 93 ki te 196.
\left(x-14\right)^{2}=289
Tauwehea x^{2}-28x+196. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-14\right)^{2}}=\sqrt{289}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-14=17 x-14=-17
Whakarūnātia.
x=31 x=-3
Me tāpiri 14 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}