Whakaoti mō x
x=-\frac{1}{2}=-0.5
x=\frac{3}{5}=0.6
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
{ x }^{ 2 } - \frac{ 1 }{ 10 } x- \frac{ 3 }{ 10 } =0
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-\frac{1}{10}x-\frac{3}{10}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{1}{10}\right)±\sqrt{\left(-\frac{1}{10}\right)^{2}-4\left(-\frac{3}{10}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -\frac{1}{10} mō b, me -\frac{3}{10} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{10}\right)±\sqrt{\frac{1}{100}-4\left(-\frac{3}{10}\right)}}{2}
Pūruatia -\frac{1}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{1}{10}\right)±\sqrt{\frac{1}{100}+\frac{6}{5}}}{2}
Whakareatia -4 ki te -\frac{3}{10}.
x=\frac{-\left(-\frac{1}{10}\right)±\sqrt{\frac{121}{100}}}{2}
Tāpiri \frac{1}{100} ki te \frac{6}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{1}{10}\right)±\frac{11}{10}}{2}
Tuhia te pūtakerua o te \frac{121}{100}.
x=\frac{\frac{1}{10}±\frac{11}{10}}{2}
Ko te tauaro o -\frac{1}{10} ko \frac{1}{10}.
x=\frac{\frac{6}{5}}{2}
Nā, me whakaoti te whārite x=\frac{\frac{1}{10}±\frac{11}{10}}{2} ina he tāpiri te ±. Tāpiri \frac{1}{10} ki te \frac{11}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{5}
Whakawehe \frac{6}{5} ki te 2.
x=-\frac{1}{2}
Nā, me whakaoti te whārite x=\frac{\frac{1}{10}±\frac{11}{10}}{2} ina he tango te ±. Tango \frac{11}{10} mai i \frac{1}{10} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{5} x=-\frac{1}{2}
Kua oti te whārite te whakatau.
x^{2}-\frac{1}{10}x-\frac{3}{10}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-\frac{1}{10}x-\frac{3}{10}-\left(-\frac{3}{10}\right)=-\left(-\frac{3}{10}\right)
Me tāpiri \frac{3}{10} ki ngā taha e rua o te whārite.
x^{2}-\frac{1}{10}x=-\left(-\frac{3}{10}\right)
Mā te tango i te -\frac{3}{10} i a ia ake anō ka toe ko te 0.
x^{2}-\frac{1}{10}x=\frac{3}{10}
Tango -\frac{3}{10} mai i 0.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=\frac{3}{10}+\left(-\frac{1}{20}\right)^{2}
Whakawehea te -\frac{1}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{20}. Nā, tāpiria te pūrua o te -\frac{1}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{3}{10}+\frac{1}{400}
Pūruatia -\frac{1}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{121}{400}
Tāpiri \frac{3}{10} ki te \frac{1}{400} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{20}\right)^{2}=\frac{121}{400}
Tauwehea x^{2}-\frac{1}{10}x+\frac{1}{400}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{\frac{121}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{20}=\frac{11}{20} x-\frac{1}{20}=-\frac{11}{20}
Whakarūnātia.
x=\frac{3}{5} x=-\frac{1}{2}
Me tāpiri \frac{1}{20} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}