Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\frac{\sqrt{314}}{10} x=-\frac{\sqrt{314}}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-3.14=0
Tangohia te 3.14 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-3.14\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -3.14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3.14\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{12.56}}{2}
Whakareatia -4 ki te -3.14.
x=\frac{0±\frac{\sqrt{314}}{5}}{2}
Tuhia te pūtakerua o te 12.56.
x=\frac{\sqrt{314}}{10}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{314}}{5}}{2} ina he tāpiri te ±.
x=-\frac{\sqrt{314}}{10}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{314}}{5}}{2} ina he tango te ±.
x=\frac{\sqrt{314}}{10} x=-\frac{\sqrt{314}}{10}
Kua oti te whārite te whakatau.