Whakaoti mō x
x=5\sqrt{13}\approx 18.027756377
x=-5\sqrt{13}\approx -18.027756377
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=650-x^{2}
Tāpirihia te 25 ki te 625, ka 650.
x^{2}+x^{2}=650
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}=650
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
x^{2}=\frac{650}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=325
Whakawehea te 650 ki te 2, kia riro ko 325.
x=5\sqrt{13} x=-5\sqrt{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=650-x^{2}
Tāpirihia te 25 ki te 625, ka 650.
x^{2}-650=-x^{2}
Tangohia te 650 mai i ngā taha e rua.
x^{2}-650+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}-650=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-650\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -650 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-650\right)}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\left(-650\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{5200}}{2\times 2}
Whakareatia -8 ki te -650.
x=\frac{0±20\sqrt{13}}{2\times 2}
Tuhia te pūtakerua o te 5200.
x=\frac{0±20\sqrt{13}}{4}
Whakareatia 2 ki te 2.
x=5\sqrt{13}
Nā, me whakaoti te whārite x=\frac{0±20\sqrt{13}}{4} ina he tāpiri te ±.
x=-5\sqrt{13}
Nā, me whakaoti te whārite x=\frac{0±20\sqrt{13}}{4} ina he tango te ±.
x=5\sqrt{13} x=-5\sqrt{13}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}