Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-12=-0.2x
Tangohia te 12 mai i ngā taha e rua.
x^{2}-12+0.2x=0
Me tāpiri te 0.2x ki ngā taha e rua.
x^{2}+0.2x-12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-0.2±\sqrt{0.2^{2}-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0.2 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.2±\sqrt{0.04-4\left(-12\right)}}{2}
Pūruatia 0.2 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-0.2±\sqrt{0.04+48}}{2}
Whakareatia -4 ki te -12.
x=\frac{-0.2±\sqrt{48.04}}{2}
Tāpiri 0.04 ki te 48.
x=\frac{-0.2±\frac{\sqrt{1201}}{5}}{2}
Tuhia te pūtakerua o te 48.04.
x=\frac{\sqrt{1201}-1}{2\times 5}
Nā, me whakaoti te whārite x=\frac{-0.2±\frac{\sqrt{1201}}{5}}{2} ina he tāpiri te ±. Tāpiri -0.2 ki te \frac{\sqrt{1201}}{5}.
x=\frac{\sqrt{1201}-1}{10}
Whakawehe \frac{-1+\sqrt{1201}}{5} ki te 2.
x=\frac{-\sqrt{1201}-1}{2\times 5}
Nā, me whakaoti te whārite x=\frac{-0.2±\frac{\sqrt{1201}}{5}}{2} ina he tango te ±. Tango \frac{\sqrt{1201}}{5} mai i -0.2.
x=\frac{-\sqrt{1201}-1}{10}
Whakawehe \frac{-1-\sqrt{1201}}{5} ki te 2.
x=\frac{\sqrt{1201}-1}{10} x=\frac{-\sqrt{1201}-1}{10}
Kua oti te whārite te whakatau.
x^{2}+0.2x=12
Me tāpiri te 0.2x ki ngā taha e rua.
x^{2}+0.2x+0.1^{2}=12+0.1^{2}
Whakawehea te 0.2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 0.1. Nā, tāpiria te pūrua o te 0.1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+0.2x+0.01=12+0.01
Pūruatia 0.1 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+0.2x+0.01=12.01
Tāpiri 12 ki te 0.01.
\left(x+0.1\right)^{2}=12.01
Tauwehea x^{2}+0.2x+0.01. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.1\right)^{2}}=\sqrt{12.01}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+0.1=\frac{\sqrt{1201}}{10} x+0.1=-\frac{\sqrt{1201}}{10}
Whakarūnātia.
x=\frac{\sqrt{1201}-1}{10} x=\frac{-\sqrt{1201}-1}{10}
Me tango 0.1 mai i ngā taha e rua o te whārite.