Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2x=35
Me tāpiri te 2x ki ngā taha e rua.
x^{2}+2x-35=0
Tangohia te 35 mai i ngā taha e rua.
a+b=2 ab=-35
Hei whakaoti i te whārite, whakatauwehea te x^{2}+2x-35 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,35 -5,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -35.
-1+35=34 -5+7=2
Tātaihia te tapeke mō ia takirua.
a=-5 b=7
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x-5\right)\left(x+7\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=5 x=-7
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+7=0.
x^{2}+2x=35
Me tāpiri te 2x ki ngā taha e rua.
x^{2}+2x-35=0
Tangohia te 35 mai i ngā taha e rua.
a+b=2 ab=1\left(-35\right)=-35
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,35 -5,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -35.
-1+35=34 -5+7=2
Tātaihia te tapeke mō ia takirua.
a=-5 b=7
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x^{2}-5x\right)+\left(7x-35\right)
Tuhia anō te x^{2}+2x-35 hei \left(x^{2}-5x\right)+\left(7x-35\right).
x\left(x-5\right)+7\left(x-5\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x-5\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-7
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+7=0.
x^{2}+2x=35
Me tāpiri te 2x ki ngā taha e rua.
x^{2}+2x-35=0
Tangohia te 35 mai i ngā taha e rua.
x=\frac{-2±\sqrt{2^{2}-4\left(-35\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-35\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+140}}{2}
Whakareatia -4 ki te -35.
x=\frac{-2±\sqrt{144}}{2}
Tāpiri 4 ki te 140.
x=\frac{-2±12}{2}
Tuhia te pūtakerua o te 144.
x=\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{-2±12}{2} ina he tāpiri te ±. Tāpiri -2 ki te 12.
x=5
Whakawehe 10 ki te 2.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{-2±12}{2} ina he tango te ±. Tango 12 mai i -2.
x=-7
Whakawehe -14 ki te 2.
x=5 x=-7
Kua oti te whārite te whakatau.
x^{2}+2x=35
Me tāpiri te 2x ki ngā taha e rua.
x^{2}+2x+1^{2}=35+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=35+1
Pūrua 1.
x^{2}+2x+1=36
Tāpiri 35 ki te 1.
\left(x+1\right)^{2}=36
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=6 x+1=-6
Whakarūnātia.
x=5 x=-7
Me tango 1 mai i ngā taha e rua o te whārite.