Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\sqrt{\pi } x=-\sqrt{\pi }
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\pi
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x^{2}-\pi =\pi -\pi
Me tango \pi mai i ngā taha e rua o te whārite.
x^{2}-\pi =0
Mā te tango i te \pi i a ia ake anō ka toe ko te 0.
x=\frac{0±\sqrt{0^{2}-4\left(-\pi \right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\pi mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\pi \right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{4\pi }}{2}
Whakareatia -4 ki te -\pi .
x=\frac{0±2\sqrt{\pi }}{2}
Tuhia te pūtakerua o te 4\pi .
x=\sqrt{\pi }
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{\pi }}{2} ina he tāpiri te ±.
x=-\sqrt{\pi }
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{\pi }}{2} ina he tango te ±.
x=\sqrt{\pi } x=-\sqrt{\pi }
Kua oti te whārite te whakatau.