Whakaoti mō x
x = \frac{\sqrt{21} - 1}{2} \approx 1.791287847
x=\frac{-\sqrt{21}-1}{2}\approx -2.791287847
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-x-\left(2x^{2}-5\right)=0
Pahekotia te x me -2x, ka -x.
x^{2}-x-2x^{2}+5=0
Hei kimi i te tauaro o 2x^{2}-5, kimihia te tauaro o ia taurangi.
-x^{2}-x+5=0
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 5}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -1 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 5}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-1\right)±\sqrt{1+20}}{2\left(-1\right)}
Whakareatia 4 ki te 5.
x=\frac{-\left(-1\right)±\sqrt{21}}{2\left(-1\right)}
Tāpiri 1 ki te 20.
x=\frac{1±\sqrt{21}}{2\left(-1\right)}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{21}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{21}+1}{-2}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{21}}{-2} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{21}.
x=\frac{-\sqrt{21}-1}{2}
Whakawehe 1+\sqrt{21} ki te -2.
x=\frac{1-\sqrt{21}}{-2}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{21}}{-2} ina he tango te ±. Tango \sqrt{21} mai i 1.
x=\frac{\sqrt{21}-1}{2}
Whakawehe 1-\sqrt{21} ki te -2.
x=\frac{-\sqrt{21}-1}{2} x=\frac{\sqrt{21}-1}{2}
Kua oti te whārite te whakatau.
x^{2}-x-\left(2x^{2}-5\right)=0
Pahekotia te x me -2x, ka -x.
x^{2}-x-2x^{2}+5=0
Hei kimi i te tauaro o 2x^{2}-5, kimihia te tauaro o ia taurangi.
-x^{2}-x+5=0
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-x=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-x^{2}-x}{-1}=-\frac{5}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{5}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+x=-\frac{5}{-1}
Whakawehe -1 ki te -1.
x^{2}+x=5
Whakawehe -5 ki te -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=5+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=5+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{21}{4}
Tāpiri 5 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{21}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{\sqrt{21}}{2} x+\frac{1}{2}=-\frac{\sqrt{21}}{2}
Whakarūnātia.
x=\frac{\sqrt{21}-1}{2} x=\frac{-\sqrt{21}-1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}