Whakaoti mō p (complex solution)
\left\{\begin{matrix}p=-x-\frac{q}{x}\text{, }&x\neq 0\\p\in \mathrm{C}\text{, }&q=0\text{ and }x=0\end{matrix}\right.
Whakaoti mō p
\left\{\begin{matrix}p=-x-\frac{q}{x}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&q=0\text{ and }x=0\end{matrix}\right.
Whakaoti mō q
q=-x\left(x+p\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
px+q=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
px=-x^{2}-q
Tangohia te q mai i ngā taha e rua.
xp=-x^{2}-q
He hanga arowhānui tō te whārite.
\frac{xp}{x}=\frac{-x^{2}-q}{x}
Whakawehea ngā taha e rua ki te x.
p=\frac{-x^{2}-q}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
p=-x-\frac{q}{x}
Whakawehe -x^{2}-q ki te x.
px+q=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
px=-x^{2}-q
Tangohia te q mai i ngā taha e rua.
xp=-x^{2}-q
He hanga arowhānui tō te whārite.
\frac{xp}{x}=\frac{-x^{2}-q}{x}
Whakawehea ngā taha e rua ki te x.
p=\frac{-x^{2}-q}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
p=-x-\frac{q}{x}
Whakawehe -x^{2}-q ki te x.
px+q=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
q=-x^{2}-px
Tangohia te px mai i ngā taha e rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}