Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+8x-10=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-10\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{64-4\left(-10\right)}}{2}
Pūrua 8.
x=\frac{-8±\sqrt{64+40}}{2}
Whakareatia -4 ki te -10.
x=\frac{-8±\sqrt{104}}{2}
Tāpiri 64 ki te 40.
x=\frac{-8±2\sqrt{26}}{2}
Tuhia te pūtakerua o te 104.
x=\frac{2\sqrt{26}-8}{2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{26}}{2} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{26}.
x=\sqrt{26}-4
Whakawehe -8+2\sqrt{26} ki te 2.
x=\frac{-2\sqrt{26}-8}{2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{26}}{2} ina he tango te ±. Tango 2\sqrt{26} mai i -8.
x=-\sqrt{26}-4
Whakawehe -8-2\sqrt{26} ki te 2.
x^{2}+8x-10=\left(x-\left(\sqrt{26}-4\right)\right)\left(x-\left(-\sqrt{26}-4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -4+\sqrt{26} mō te x_{1} me te -4-\sqrt{26} mō te x_{2}.