Whakaoti mō x
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+8x+37-21=0
Tangohia te 21 mai i ngā taha e rua.
x^{2}+8x+16=0
Tangohia te 21 i te 37, ka 16.
a+b=8 ab=16
Hei whakaoti i te whārite, whakatauwehea te x^{2}+8x+16 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,16 2,8 4,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 16.
1+16=17 2+8=10 4+4=8
Tātaihia te tapeke mō ia takirua.
a=4 b=4
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(x+4\right)\left(x+4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
\left(x+4\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-4
Hei kimi i te otinga whārite, whakaotia te x+4=0.
x^{2}+8x+37-21=0
Tangohia te 21 mai i ngā taha e rua.
x^{2}+8x+16=0
Tangohia te 21 i te 37, ka 16.
a+b=8 ab=1\times 16=16
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,16 2,8 4,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 16.
1+16=17 2+8=10 4+4=8
Tātaihia te tapeke mō ia takirua.
a=4 b=4
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(x^{2}+4x\right)+\left(4x+16\right)
Tuhia anō te x^{2}+8x+16 hei \left(x^{2}+4x\right)+\left(4x+16\right).
x\left(x+4\right)+4\left(x+4\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x+4\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x+4 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x+4\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-4
Hei kimi i te otinga whārite, whakaotia te x+4=0.
x^{2}+8x+37=21
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+8x+37-21=21-21
Me tango 21 mai i ngā taha e rua o te whārite.
x^{2}+8x+37-21=0
Mā te tango i te 21 i a ia ake anō ka toe ko te 0.
x^{2}+8x+16=0
Tango 21 mai i 37.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 16}}{2}
Pūrua 8.
x=\frac{-8±\sqrt{64-64}}{2}
Whakareatia -4 ki te 16.
x=\frac{-8±\sqrt{0}}{2}
Tāpiri 64 ki te -64.
x=-\frac{8}{2}
Tuhia te pūtakerua o te 0.
x=-4
Whakawehe -8 ki te 2.
x^{2}+8x+37=21
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+8x+37-37=21-37
Me tango 37 mai i ngā taha e rua o te whārite.
x^{2}+8x=21-37
Mā te tango i te 37 i a ia ake anō ka toe ko te 0.
x^{2}+8x=-16
Tango 37 mai i 21.
x^{2}+8x+4^{2}=-16+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=-16+16
Pūrua 4.
x^{2}+8x+16=0
Tāpiri -16 ki te 16.
\left(x+4\right)^{2}=0
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=0 x+4=0
Whakarūnātia.
x=-4 x=-4
Me tango 4 mai i ngā taha e rua o te whārite.
x=-4
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}