Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+64x-566=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-64±\sqrt{64^{2}-4\left(-566\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-64±\sqrt{4096-4\left(-566\right)}}{2}
Pūrua 64.
x=\frac{-64±\sqrt{4096+2264}}{2}
Whakareatia -4 ki te -566.
x=\frac{-64±\sqrt{6360}}{2}
Tāpiri 4096 ki te 2264.
x=\frac{-64±2\sqrt{1590}}{2}
Tuhia te pūtakerua o te 6360.
x=\frac{2\sqrt{1590}-64}{2}
Nā, me whakaoti te whārite x=\frac{-64±2\sqrt{1590}}{2} ina he tāpiri te ±. Tāpiri -64 ki te 2\sqrt{1590}.
x=\sqrt{1590}-32
Whakawehe -64+2\sqrt{1590} ki te 2.
x=\frac{-2\sqrt{1590}-64}{2}
Nā, me whakaoti te whārite x=\frac{-64±2\sqrt{1590}}{2} ina he tango te ±. Tango 2\sqrt{1590} mai i -64.
x=-\sqrt{1590}-32
Whakawehe -64-2\sqrt{1590} ki te 2.
x^{2}+64x-566=\left(x-\left(\sqrt{1590}-32\right)\right)\left(x-\left(-\sqrt{1590}-32\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -32+\sqrt{1590} mō te x_{1} me te -32-\sqrt{1590} mō te x_{2}.