Whakaoti mō x (complex solution)
x=\sqrt{721}-26\approx 0.851443164
x=-\left(\sqrt{721}+26\right)\approx -52.851443164
Whakaoti mō x
x=\sqrt{721}-26\approx 0.851443164
x=-\sqrt{721}-26\approx -52.851443164
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+52x-45=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-52±\sqrt{52^{2}-4\left(-45\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 52 mō b, me -45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\left(-45\right)}}{2}
Pūrua 52.
x=\frac{-52±\sqrt{2704+180}}{2}
Whakareatia -4 ki te -45.
x=\frac{-52±\sqrt{2884}}{2}
Tāpiri 2704 ki te 180.
x=\frac{-52±2\sqrt{721}}{2}
Tuhia te pūtakerua o te 2884.
x=\frac{2\sqrt{721}-52}{2}
Nā, me whakaoti te whārite x=\frac{-52±2\sqrt{721}}{2} ina he tāpiri te ±. Tāpiri -52 ki te 2\sqrt{721}.
x=\sqrt{721}-26
Whakawehe -52+2\sqrt{721} ki te 2.
x=\frac{-2\sqrt{721}-52}{2}
Nā, me whakaoti te whārite x=\frac{-52±2\sqrt{721}}{2} ina he tango te ±. Tango 2\sqrt{721} mai i -52.
x=-\sqrt{721}-26
Whakawehe -52-2\sqrt{721} ki te 2.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Kua oti te whārite te whakatau.
x^{2}+52x-45=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+52x-45-\left(-45\right)=-\left(-45\right)
Me tāpiri 45 ki ngā taha e rua o te whārite.
x^{2}+52x=-\left(-45\right)
Mā te tango i te -45 i a ia ake anō ka toe ko te 0.
x^{2}+52x=45
Tango -45 mai i 0.
x^{2}+52x+26^{2}=45+26^{2}
Whakawehea te 52, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 26. Nā, tāpiria te pūrua o te 26 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+52x+676=45+676
Pūrua 26.
x^{2}+52x+676=721
Tāpiri 45 ki te 676.
\left(x+26\right)^{2}=721
Tauwehea x^{2}+52x+676. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+26\right)^{2}}=\sqrt{721}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+26=\sqrt{721} x+26=-\sqrt{721}
Whakarūnātia.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Me tango 26 mai i ngā taha e rua o te whārite.
x^{2}+52x-45=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-52±\sqrt{52^{2}-4\left(-45\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 52 mō b, me -45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\left(-45\right)}}{2}
Pūrua 52.
x=\frac{-52±\sqrt{2704+180}}{2}
Whakareatia -4 ki te -45.
x=\frac{-52±\sqrt{2884}}{2}
Tāpiri 2704 ki te 180.
x=\frac{-52±2\sqrt{721}}{2}
Tuhia te pūtakerua o te 2884.
x=\frac{2\sqrt{721}-52}{2}
Nā, me whakaoti te whārite x=\frac{-52±2\sqrt{721}}{2} ina he tāpiri te ±. Tāpiri -52 ki te 2\sqrt{721}.
x=\sqrt{721}-26
Whakawehe -52+2\sqrt{721} ki te 2.
x=\frac{-2\sqrt{721}-52}{2}
Nā, me whakaoti te whārite x=\frac{-52±2\sqrt{721}}{2} ina he tango te ±. Tango 2\sqrt{721} mai i -52.
x=-\sqrt{721}-26
Whakawehe -52-2\sqrt{721} ki te 2.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Kua oti te whārite te whakatau.
x^{2}+52x-45=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+52x-45-\left(-45\right)=-\left(-45\right)
Me tāpiri 45 ki ngā taha e rua o te whārite.
x^{2}+52x=-\left(-45\right)
Mā te tango i te -45 i a ia ake anō ka toe ko te 0.
x^{2}+52x=45
Tango -45 mai i 0.
x^{2}+52x+26^{2}=45+26^{2}
Whakawehea te 52, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 26. Nā, tāpiria te pūrua o te 26 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+52x+676=45+676
Pūrua 26.
x^{2}+52x+676=721
Tāpiri 45 ki te 676.
\left(x+26\right)^{2}=721
Tauwehea x^{2}+52x+676. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+26\right)^{2}}=\sqrt{721}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+26=\sqrt{721} x+26=-\sqrt{721}
Whakarūnātia.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Me tango 26 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}