Tauwehe
\left(x+16\right)\left(x+24\right)
Aromātai
\left(x+16\right)\left(x+24\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=40 ab=1\times 384=384
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+384. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,384 2,192 3,128 4,96 6,64 8,48 12,32 16,24
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 384.
1+384=385 2+192=194 3+128=131 4+96=100 6+64=70 8+48=56 12+32=44 16+24=40
Tātaihia te tapeke mō ia takirua.
a=16 b=24
Ko te otinga te takirua ka hoatu i te tapeke 40.
\left(x^{2}+16x\right)+\left(24x+384\right)
Tuhia anō te x^{2}+40x+384 hei \left(x^{2}+16x\right)+\left(24x+384\right).
x\left(x+16\right)+24\left(x+16\right)
Tauwehea te x i te tuatahi me te 24 i te rōpū tuarua.
\left(x+16\right)\left(x+24\right)
Whakatauwehea atu te kīanga pātahi x+16 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}+40x+384=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-40±\sqrt{40^{2}-4\times 384}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-40±\sqrt{1600-4\times 384}}{2}
Pūrua 40.
x=\frac{-40±\sqrt{1600-1536}}{2}
Whakareatia -4 ki te 384.
x=\frac{-40±\sqrt{64}}{2}
Tāpiri 1600 ki te -1536.
x=\frac{-40±8}{2}
Tuhia te pūtakerua o te 64.
x=-\frac{32}{2}
Nā, me whakaoti te whārite x=\frac{-40±8}{2} ina he tāpiri te ±. Tāpiri -40 ki te 8.
x=-16
Whakawehe -32 ki te 2.
x=-\frac{48}{2}
Nā, me whakaoti te whārite x=\frac{-40±8}{2} ina he tango te ±. Tango 8 mai i -40.
x=-24
Whakawehe -48 ki te 2.
x^{2}+40x+384=\left(x-\left(-16\right)\right)\left(x-\left(-24\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -16 mō te x_{1} me te -24 mō te x_{2}.
x^{2}+40x+384=\left(x+16\right)\left(x+24\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}