Whakaoti mō x
x=-24
x=-10
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=34 ab=240
Hei whakaoti i te whārite, whakatauwehea te x^{2}+34x+240 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,240 2,120 3,80 4,60 5,48 6,40 8,30 10,24 12,20 15,16
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 240.
1+240=241 2+120=122 3+80=83 4+60=64 5+48=53 6+40=46 8+30=38 10+24=34 12+20=32 15+16=31
Tātaihia te tapeke mō ia takirua.
a=10 b=24
Ko te otinga te takirua ka hoatu i te tapeke 34.
\left(x+10\right)\left(x+24\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-10 x=-24
Hei kimi otinga whārite, me whakaoti te x+10=0 me te x+24=0.
a+b=34 ab=1\times 240=240
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+240. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,240 2,120 3,80 4,60 5,48 6,40 8,30 10,24 12,20 15,16
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 240.
1+240=241 2+120=122 3+80=83 4+60=64 5+48=53 6+40=46 8+30=38 10+24=34 12+20=32 15+16=31
Tātaihia te tapeke mō ia takirua.
a=10 b=24
Ko te otinga te takirua ka hoatu i te tapeke 34.
\left(x^{2}+10x\right)+\left(24x+240\right)
Tuhia anō te x^{2}+34x+240 hei \left(x^{2}+10x\right)+\left(24x+240\right).
x\left(x+10\right)+24\left(x+10\right)
Tauwehea te x i te tuatahi me te 24 i te rōpū tuarua.
\left(x+10\right)\left(x+24\right)
Whakatauwehea atu te kīanga pātahi x+10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-10 x=-24
Hei kimi otinga whārite, me whakaoti te x+10=0 me te x+24=0.
x^{2}+34x+240=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-34±\sqrt{34^{2}-4\times 240}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 34 mō b, me 240 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-34±\sqrt{1156-4\times 240}}{2}
Pūrua 34.
x=\frac{-34±\sqrt{1156-960}}{2}
Whakareatia -4 ki te 240.
x=\frac{-34±\sqrt{196}}{2}
Tāpiri 1156 ki te -960.
x=\frac{-34±14}{2}
Tuhia te pūtakerua o te 196.
x=-\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{-34±14}{2} ina he tāpiri te ±. Tāpiri -34 ki te 14.
x=-10
Whakawehe -20 ki te 2.
x=-\frac{48}{2}
Nā, me whakaoti te whārite x=\frac{-34±14}{2} ina he tango te ±. Tango 14 mai i -34.
x=-24
Whakawehe -48 ki te 2.
x=-10 x=-24
Kua oti te whārite te whakatau.
x^{2}+34x+240=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+34x+240-240=-240
Me tango 240 mai i ngā taha e rua o te whārite.
x^{2}+34x=-240
Mā te tango i te 240 i a ia ake anō ka toe ko te 0.
x^{2}+34x+17^{2}=-240+17^{2}
Whakawehea te 34, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 17. Nā, tāpiria te pūrua o te 17 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+34x+289=-240+289
Pūrua 17.
x^{2}+34x+289=49
Tāpiri -240 ki te 289.
\left(x+17\right)^{2}=49
Tauwehea x^{2}+34x+289. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+17\right)^{2}}=\sqrt{49}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+17=7 x+17=-7
Whakarūnātia.
x=-10 x=-24
Me tango 17 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}