Whakaoti mō x
x=3\sqrt{319537}-1697\approx -1.17188371
x=-3\sqrt{319537}-1697\approx -3392.82811629
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+3394x+3976=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3394±\sqrt{3394^{2}-4\times 3976}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 3394 mō b, me 3976 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3394±\sqrt{11519236-4\times 3976}}{2}
Pūrua 3394.
x=\frac{-3394±\sqrt{11519236-15904}}{2}
Whakareatia -4 ki te 3976.
x=\frac{-3394±\sqrt{11503332}}{2}
Tāpiri 11519236 ki te -15904.
x=\frac{-3394±6\sqrt{319537}}{2}
Tuhia te pūtakerua o te 11503332.
x=\frac{6\sqrt{319537}-3394}{2}
Nā, me whakaoti te whārite x=\frac{-3394±6\sqrt{319537}}{2} ina he tāpiri te ±. Tāpiri -3394 ki te 6\sqrt{319537}.
x=3\sqrt{319537}-1697
Whakawehe -3394+6\sqrt{319537} ki te 2.
x=\frac{-6\sqrt{319537}-3394}{2}
Nā, me whakaoti te whārite x=\frac{-3394±6\sqrt{319537}}{2} ina he tango te ±. Tango 6\sqrt{319537} mai i -3394.
x=-3\sqrt{319537}-1697
Whakawehe -3394-6\sqrt{319537} ki te 2.
x=3\sqrt{319537}-1697 x=-3\sqrt{319537}-1697
Kua oti te whārite te whakatau.
x^{2}+3394x+3976=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+3394x+3976-3976=-3976
Me tango 3976 mai i ngā taha e rua o te whārite.
x^{2}+3394x=-3976
Mā te tango i te 3976 i a ia ake anō ka toe ko te 0.
x^{2}+3394x+1697^{2}=-3976+1697^{2}
Whakawehea te 3394, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1697. Nā, tāpiria te pūrua o te 1697 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3394x+2879809=-3976+2879809
Pūrua 1697.
x^{2}+3394x+2879809=2875833
Tāpiri -3976 ki te 2879809.
\left(x+1697\right)^{2}=2875833
Tauwehea x^{2}+3394x+2879809. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1697\right)^{2}}=\sqrt{2875833}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1697=3\sqrt{319537} x+1697=-3\sqrt{319537}
Whakarūnātia.
x=3\sqrt{319537}-1697 x=-3\sqrt{319537}-1697
Me tango 1697 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}