Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2x-5=0\times 2x^{2}
Whakareatia te 0 ki te 5, ka 0.
x^{2}+2x-5=0x^{2}
Whakareatia te 0 ki te 2, ka 0.
x^{2}+2x-5=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
x=\frac{-2±\sqrt{2^{2}-4\left(-5\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-5\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+20}}{2}
Whakareatia -4 ki te -5.
x=\frac{-2±\sqrt{24}}{2}
Tāpiri 4 ki te 20.
x=\frac{-2±2\sqrt{6}}{2}
Tuhia te pūtakerua o te 24.
x=\frac{2\sqrt{6}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{6}.
x=\sqrt{6}-1
Whakawehe -2+2\sqrt{6} ki te 2.
x=\frac{-2\sqrt{6}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{6}}{2} ina he tango te ±. Tango 2\sqrt{6} mai i -2.
x=-\sqrt{6}-1
Whakawehe -2-2\sqrt{6} ki te 2.
x=\sqrt{6}-1 x=-\sqrt{6}-1
Kua oti te whārite te whakatau.
x^{2}+2x-5=0\times 2x^{2}
Whakareatia te 0 ki te 5, ka 0.
x^{2}+2x-5=0x^{2}
Whakareatia te 0 ki te 2, ka 0.
x^{2}+2x-5=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{2}+2x=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+2x+1^{2}=5+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=5+1
Pūrua 1.
x^{2}+2x+1=6
Tāpiri 5 ki te 1.
\left(x+1\right)^{2}=6
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{6} x+1=-\sqrt{6}
Whakarūnātia.
x=\sqrt{6}-1 x=-\sqrt{6}-1
Me tango 1 mai i ngā taha e rua o te whārite.
x^{2}+2x-5=0\times 2x^{2}
Whakareatia te 0 ki te 5, ka 0.
x^{2}+2x-5=0x^{2}
Whakareatia te 0 ki te 2, ka 0.
x^{2}+2x-5=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
x=\frac{-2±\sqrt{2^{2}-4\left(-5\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-5\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+20}}{2}
Whakareatia -4 ki te -5.
x=\frac{-2±\sqrt{24}}{2}
Tāpiri 4 ki te 20.
x=\frac{-2±2\sqrt{6}}{2}
Tuhia te pūtakerua o te 24.
x=\frac{2\sqrt{6}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{6}.
x=\sqrt{6}-1
Whakawehe -2+2\sqrt{6} ki te 2.
x=\frac{-2\sqrt{6}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{6}}{2} ina he tango te ±. Tango 2\sqrt{6} mai i -2.
x=-\sqrt{6}-1
Whakawehe -2-2\sqrt{6} ki te 2.
x=\sqrt{6}-1 x=-\sqrt{6}-1
Kua oti te whārite te whakatau.
x^{2}+2x-5=0\times 2x^{2}
Whakareatia te 0 ki te 5, ka 0.
x^{2}+2x-5=0x^{2}
Whakareatia te 0 ki te 2, ka 0.
x^{2}+2x-5=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{2}+2x=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+2x+1^{2}=5+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=5+1
Pūrua 1.
x^{2}+2x+1=6
Tāpiri 5 ki te 1.
\left(x+1\right)^{2}=6
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{6} x+1=-\sqrt{6}
Whakarūnātia.
x=\sqrt{6}-1 x=-\sqrt{6}-1
Me tango 1 mai i ngā taha e rua o te whārite.