Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=2 ab=-3
Hei whakaoti i te whārite, whakatauwehea te x^{2}+2x-3 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-1\right)\left(x+3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=1 x=-3
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+3=0.
a+b=2 ab=1\left(-3\right)=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-x\right)+\left(3x-3\right)
Tuhia anō te x^{2}+2x-3 hei \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-3
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+3=0.
x^{2}+2x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+12}}{2}
Whakareatia -4 ki te -3.
x=\frac{-2±\sqrt{16}}{2}
Tāpiri 4 ki te 12.
x=\frac{-2±4}{2}
Tuhia te pūtakerua o te 16.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-2±4}{2} ina he tāpiri te ±. Tāpiri -2 ki te 4.
x=1
Whakawehe 2 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-2±4}{2} ina he tango te ±. Tango 4 mai i -2.
x=-3
Whakawehe -6 ki te 2.
x=1 x=-3
Kua oti te whārite te whakatau.
x^{2}+2x-3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+2x-3-\left(-3\right)=-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
x^{2}+2x=-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
x^{2}+2x=3
Tango -3 mai i 0.
x^{2}+2x+1^{2}=3+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=3+1
Pūrua 1.
x^{2}+2x+1=4
Tāpiri 3 ki te 1.
\left(x+1\right)^{2}=4
Tauwehea te x^{2}+2x+1. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=2 x+1=-2
Whakarūnātia.
x=1 x=-3
Me tango 1 mai i ngā taha e rua o te whārite.